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Outline of talk

�Some problems in dynamical astron-
omy suggest a three-body analysis

� e.g., Jupiter-family comets and scattered Kuiper Belt
objects (under Neptune’s control)

� By applying dynamical systems methods to the pla-
nar, circular restricted three-body problem, several ques-
tions regarding these populations may be addressed

� Comparison with observational data is made
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Dynamical astronomy
� We want to answer several questions regarding the trans-

port and origin of some kinds of solar system material

• How do we characterize the motion of Jupiter-family comets
(JFCs) and scattered Kuiper Belt objects (SKBOs)?

• How likely is a transition between the exterior and interior
regions (e.g., Oterma)?

• How probable is a Shoemaker-Levy 9-type collision with Jupiter?
Or an asteroid collision with Earth (e.g., KT impact)?

� Harder questions

• How does an SKBO become a JFC (and vice versa)?

• How does impact ejecta get from Mars to Earth?
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Jupiter-family comets
◦ JFCs and lines of constant Tisserand parameter,

T =
1

a
+ 2

√
a(1− e2),

an approximation of the Jacobi constant
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Scattered Kuiper Belt Objects
◦ Current SKBO locations in black, with some Tisserand values w.r.t.

Neptune in red (T ≈ 3)

Scattered Kuiper Belt Objects
◦ Kuiper Belt objects in green, SKBOs near T = 3

◦ Neptune L2 stable and unstable manifolds in black (around T = 3)
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Scattered Kuiper Belt Objects
◦ Seen in inertial space
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Motion of JFCs and SKBOs
� Theory, observation, and numerical experiment show

motion along nearly constant Tisserand parameter (most
of the time)

� We approximate the short-timescale motion of JFCs and
SKBOs as occurring within an energy shell of the re-
stricted three-body problem

� Several objects may be in nearly the same energy shell,
i.e., all have |T − T ∗| ≤ δT

� Can we analyze the structure of an energy shell to de-
termine likely locations of JFCs and SKBOs?

8



Motion within energy shell
� Recall the planar, circular restricted three-body problem

from Jerry Marsden’s talk

� For fixed µ, an energy shell (or energy manifold) of en-
ergy ε is

M(µ, ε) = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = ε}.
The M(µ, ε) are 3-dimensional surfaces foliating the
4-dimensional phase space.

9



Poincaré surface-of-section
� Study Poincaré surface of section at fixed energy ε:

Σ(µ,ε) = {(x, ẋ)|y = 0, ẏ = f (x, ẋ, µ, ε) < 0}
reducing the system to an area preserving map on the
plane. Motion takes place on the cylinder, S1 × R.

z

P(z)

Poincaré surface-of-section and map P
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Poincaré surface-of-section
◦ The energy shell has regular components (KAM tori) and irregular com-

ponents. Large connected irregular component is the “chaotic sea.”

Poincaré surface-of-section
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Movement among resonances
◦ The motion within the chaotic sea is understood as the movement of

trajectories among resonance regions (see Meiss [1992] and Schroer and
Ott [1997]).

Schematic of two neighboring resonance regions from Meiss [1992]
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Movement among resonances
◦ This is confirmed by numerical computation.

◦ Shaded region bounded by stable and unstable invariant manifolds of an
unstable resonant (periodic) orbit.

Movement among resonances
◦ This is confirmed by numerical computation.

◦ Shaded region bounded by stable and unstable invariant manifolds of an
unstable resonant (periodic) orbit.
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Movement among resonances
◦ The unstable and stable manifolds are understood as the backbone of

the dynamics. This is the “homoclinic trellis” in the words of Poincaré.

Movement among resonances
◦ The unstable and stable manifolds are understood as the backbone of

the dynamics. This is the “homoclinic trellis” in the words of Poincaré.
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Transport quantities
� There are several approaches to computing useful trans-

port quantities.

•Markov model where the energy shell is partitioned into stochas-
tic regions separated by partial barriers (Meiss et al.)

• Set oriented methods where a graph is created to model the
underlying dynamical behavior (Dellnitz et al.)

• Lobe dynamics; following intersections of stable and unstable
invariant manifolds of periodic orbits (Wiggins et al.)

� These methods are preferred over the “brute force” as-
trodynamic calculations seen in the literature since they
are based on first principles.
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Transition Rates

¥Fluxes give rates and probabilities
¤ Jaffé, Ross, Lo, Marsden, Farrelly, and Uzer [2002]
computed the rate of escape of asteroids
temporarily captured by Mars.

¤ RRKM-like statistical approach
• similar to chemical dynamics, see Truhlar [1996]

¤ Consider an asteroid (or other body) in orbit around
Mars (perhaps impact ejecta) at a 3-body energy such
that it can escape toward the Sun.

¤ Interested in rate of escape of such bodies at a fixed
energy, i.e. FM,S(t)
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Transition Rates
¤ RRKM assumption: all asteroids in the Mars region
at fixed energy are equally likely to escape.
Then

Escape rate =
flux across potential barrier

Mars region phase space volume

¤ Compare with Monte Carlo simulations of 107,000
particles
• randomly selected initial conditions at constant energy

28



Transition Rates
� Theory and numerical simulations agree well.
◦Monte Carlo simulation (dashed) and theory (solid)
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Steady state distribution
� If the planar, circular restricted three-body problem is

ergodic, then a statistical mechanics can be built (cf.
ZhiGang [1999]).

� Recent work suggests there may be regions of the energy
shell for which the motion is ergodic, in particular the
“chaotic sea” (Jaffé et al. [2002]).

� This suggests we compute the steady state distribu-
tion of some observable for particles in the chaotic sea;
a simple method for obtaining the likely locations of any
particles within it.
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Steady state distribution
� Assuming ergodicity,

lim
t→∞

1

t

∫ t

0

A(x, y, px, py)dτ =∫
A(x, y, px, py)

C
|∂H
∂py
|dpxdxdy,

where A(x, y, px, py) is any physical observable (e.g.,
semimajor axis), one finds that the density function,
ρ(x, px), on the surface-of-section, Σ(µ,ε), is constant.

� We can determine the steady state distribution of semi-
major axes; define N(a)da as the number of particles
falling into a → a+da on the surface-of-section, Σ(µ,ε).
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Steady state distribution
� SKBOs should be in regions of high density.

Steady state distribution
� SKBOs should be in regions of high density.
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Collisions with Jupiter
� Shoemaker Levy-9: similar energy to Oterma

• Temporary capture and collision; came through L1 or L2

Possible Shoemaker-Levy 9 orbit seen in rotating frame (Chodas, 2000)

9



Collision Probabilities
� Low velocity impact probabilities

� Assume object enters the planetary region
with an energy slightly above L1 or L2

• eg, Shoemaker-Levy 9 and Earth-impacting asteroids

x
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Collision! 

Example Collision Trajectory 
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Tubes in the 3-Body Problem
� Stable and unstable manifold tubes

• Control transport through the potential barrier.
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Collision Probabilities

�Collision probabilities
◦ Compute from tube intersection with planet on Poincaré section

◦ Planetary diameter is a parameter, in addition to µ and energy E

← Diameter of planet →
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Collision Probabilities

�Collision probabilities
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Collision Probabilities
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Collision Probabilities
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The End
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