

Transport via Resonances and Close Encounters for Dust and Spacecraft

Shane D. Ross

Control and Dynamical Systems, Caltech

W.S. Koon, M.W. Lo, J.E. Marsden Three-Body Problem and Space Mission Design Workshop February 19, 2002

Introduction

- **Resonances and close encounters play a key role in:**
 - Circumstellar dust disk evolution
 - Low energy spacecraft trajectories

Current research importance

- Extrasolar planets may be detectable from their "signatures" in dust disks
- Mission trajectories consuming little fuel can be designed
 - routes from Earth orbit to lunar orbit and beyond
 - a tour of Jupiter's moons

Planet Detection

Circumstellar dust structures may reveal planets

Source: NASA, the George Mason University, and the Joint Astronomy Center (Hawaii)

Low Energy Transfers

GEO to Moon Orbit Transfer

Seen in Geocentric Inertial Frame

Low Energy Transfers

Low Energy Tour of Jupiter's Moons

Seen in Jovicentric Inertial Frame

Common Link

Consider a dust particle and a spacecraft.

- □ Gravity acts upon both primarily through the action of resonances and close encounters with other bodies ⇒ complicated conservative dynamics
- □ Add a significant perturbation
 - dust: dissipative radiation forces and radiation pressure
 - spacecraft: impulsive maneuvers or continuous low-thrust
 - ⇒ even more complicated!

Good news:

Similar tools from nonlinear dynamics can be brought to bear on both.

Outline

Dust Orbital Evolution

- Review problem
 - Gaps in the theory
- Apply dynamical systems techniques
 - \bullet Break up $N{\text{-}{\rm body}}$ problem into 3-body subproblems
 - Phase space structures governing transport
 - Goal: statistical quantities (e.g., rates)

Outline

Spacecraft Trajectory Design

□ Apply same techniques

- View as optimal control problem
- Goal: minimize fuel consumption (ΔV)
- Constraint: time of flight is reasonable

Radiation forces affecting a small particle are parameterized by

$$\beta = \frac{\text{radiation pressure force}}{\text{stellar gravitation force}} \propto \frac{1}{D}$$

Radiation pressure

$$M_{\star} \to M_{\star}(1-\beta)$$

• Poynting-Robertson drag (PR drag)

 $\dot{a}, \dot{e} \propto -\beta$

where a = semimajor axis and e = eccentricity of particle

 \square No planets \Rightarrow orbital decay from 1 AU \sim 10,000 years

- □ Planets present ⇒ trapping into mean motion resonances (MMRs) and gravitational scattering via close encounters
 - "Trapped": PR drag is counterbalanced by resonant gravitational perturbations
 - Exterior MMRs most important
 - Smaller $\beta \Rightarrow$ trapped in MMRs easier, stay trapped longer
 - Resonance capture probability depends on *e* and argument of pericenter (Lazzaro, Sicardy, Roques, and Greenberg [1994])

 Numerical simulations verify that dust grains get temporarily captured in MMRs creating a ring structure – the circumstellar disk.

Source: Dermott, Jayaraman, Xu, Gustafson, and Liou [1994]

Particles are trapped in a MMR only temporarily. Some may migrate starward toward another MMR.

Some increase in eccentricity and collide with the star.

Source: Roques, Scholl, Sicardy, and Smith [1994]

 \Box Consider the evolution of a ring around β Pictoris.

Source: Roques, Scholl, Sicardy, and Smith [1994]

Many particles become trapped in MMRs.

Source: Roques, Scholl, Sicardy, and Smith [1994]

Others are scattered by the planet to great distances.

Source: Roques, Scholl, Sicardy, and Smith [1994]

Gaps in the Theory

□ A variety of behaviors are not well understood.

Gaps in the Theory

- Dissipative effects combined with resonance phenomena are known to lead to complex dynamics (Lazzaro, Sicardy, Roques, and Greenberg [1994]).
- □ Much progress has occurred in recent years, but there are still gaps in the theory which need addressing.
- In particular, the related phenomena of jumping between resonances with a planet during migration toward a star and the outcomes of close encounters with planets have not been considered in any theory of dust orbital evolution. (Dermott, Grogan, Durda, Jayaraman, Kehoe, Kortenkamp, and Wyatt [2001]).

Transport near a MMR

Analytical studies of capture into resonance have been performed (e.g., Beaugé and Ferraz-Mello [1994]). Evolution near a resonance is modeled by a pendulumlike Hamiltonian with slowly varying parameters.

Transport near a MMR

As slowly varying parameters change, the homoclinic orbits generically break up, and particles may get captured into the resonance region or pass out of it.

Transport near a MMR

Questions motivating such study are:

- Is capture into resonance possible?
- What is the probability of capture into resonance?
- What is the average time spent within a resonance?
- □ Much progress has been made in this area (e.g., Wisdom [1982,1983], Borderies and Goldreich [1984]).
- But study has focused on the **local** dynamics around a single resonance.

- Instead of looking at each MMR in isolation, our view is to consider the entire global phase space picture of all MMRs.
 - Only in the global setting can one compute the transport rates between different MMRs.
- First step: consider the conservative (Hamiltonian) planar circular restricted three-body problem (PCRTBP)

Recall PCRTBP: motion of a particle in the gravitational field of two larger bodies in circular motion.

• View in rotating frame \implies time-independent

 \implies constant energy E

Rotating frame: different regions of motion at energy E.

Study Poincaré surface of section at fixed energy E, reducing system to a 2-dimensional area preserving map.

Poincaré surface of section

In such a system, the natural transport is well understood as the movement of trajectories among resonances (see Meiss [1992], Schroer and Ott [1997]).

We can compute the resonance regions for the PCRTBP.

□ The transport problem:

Suppose the p:q MMR has an initial population of $N_{(p:q)}$ points. The goal of our transport description is to determine the population of each MMR after t iterations

(see MacKay, Meiss, and Percival [1984]).

 \Box In order to leave the p:q MMR, a point must fall in the exit lobe of either the left or right turnstile. There is a turnstile in only one island of the chain of |p-q| islands.

A direct transition from a p:q to a p':q' MMR is possible only if the exit lobe of a p:q turnstile overlaps with the entry lobe of a p':q' turnstile.

For a particle near the planet-crossing critical curve, the possibility for a **close encounter** with the planet becomes possible.

This is mediated by **tubes** of transit orbits, heading toward (or away from) the planetary region.

• the stable and unstable manifolds of periodic orbits about L_1 and L_2 (see Koon, Lo, Marsden, SDR [2000])

In phase space (schematic)

In position space

A particle may pass by the planet or be temporarily captured in orbit about the planet.

□ Poincaré section: tube cross-sections are closed curves.

Particles inside curves move toward or away from Jupiter

□ Same Poincaré section: plot resonance regions.

2:3 exterior MMR with Jupiter

Regions of overlap lead to close encounters.

Regions of overlap occur

Statistical Quantities

Using this lobe dynamics approach (see Wiggins [1992]), several statistical quantities of interest can be computed as a function of planetary mass and particle energy.

 \bullet average trapping time in a $p:q~\mathsf{MMR}$

• flux entering p:q MMR from pr:q MMR

Drag Perturbed Case

- This approach must be augmented to consider PR drag $(\beta > 0)$.
 - Little theory is known regarding the effect of drag on Hamiltonian systems.
 - Kirk, Marsden, and Silber [1996] suggest the use of Hamiltonian methods even in the presence of drag is promising.
 - Numerical evidence suggests some phase space structure governing transport of dust between MMRs persists even for large β (Roques, Scholl, Sicardy, and Smith [1994]).

Drag Perturbed Case

□ Particles migrate to different energies.

- $\dot{E} < 0$ in interior region \Rightarrow collide with star \dot{E} can be \pm in exterior region Liou, Zook, and Jackson [1995]
- Remnants of conservative phase space structure likely survive.
 - e.g., boundaries defining resonance regions, turnstiles
- \Box For small $\beta > 0$, symmetry will be broken
 - e.g., motion tends starward
 - \implies More numerical experiments and theory needed

- □ Using the same dynamics, spacecraft trajectories can be designed
 - Use natural dynamics to lessen propellant consumption
- Consider a transfer from Earth orbit to lunar orbit
 - Use PCRTBP as model
 - Bollt and Meiss [1995]: targeting through recurrence
 - Schroer and Ott [1997]: targeting passes between MMRs
- □ Current work: seek intersections between MMRs and tubes leading to ballistic capture by the moon
 - Take full advantage of all known phase space structures

Results: much shorter transfer times than previous authors for only slightly more ΔV

Compare with Bollt and Meiss [1995]

• A tenth of the time for only 100 m/s more

- One can consider jumping between resonances of two 3-body systems.
 - Decompose the N-body problem into successive coupled 3body problems (Gomez, Koon, Lo, Marsden, Masdemont, SDR [2001]).

Consider a trajectory to tour the moons of Jupiter

- Begin in an eccentric orbit with perijove at Callisto's orbit
- Suppose one wants to visit and orbit each of the moons
- \bullet Using a standard patched-conics approach, the ΔV necessary may be prohibitively high
- Preliminary work suggests such a tour may be realizable for very little ΔV by jumping between MMRs of different moons and effecting ballistic captures

\Box For this tour: $\Delta V =$ 20 m/s, but TOF is a few years

Low Energy Tour of Jupiter's Moons

Seen in Jovicentric Inertial Frame

- \Box As seen in the case of the Earth to lunar orbit transfer, time of flight can decrease dramatically with slightly increased ΔV
- \Box More work needs to be done to determine the time-of-flight vs. ΔV curve using this approach.

References

□ Main Papers:

- Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont and S.D. Ross
 [2001] *Invariant manifolds, the spatial three-body problem and space mission design.* AAS/AIAA Astrodynamics Specialist Conference.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Resonance and capture of Jupiter comets. Celestial Mechanics and Dynamical Astronomy, 81(1-2), 27–38..
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2001] Low energy transfer to the Moon. Celestial Mechanics and Dynamical Astronomy. 81(1-2), 63-73.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469.
- Targeting low energy trajectories to the Moon, in preparation.

The End