

Set oriented methods, invariant manifolds and transport

Shane D. Ross

Control and Dynamical Systems, Caltech www.cds.caltech.edu/~shane

Caltech/MIT/NASA: W.S. Koon, F. Lekien, M.W. Lo, J.E. Marsden Uni Paderborn: M. Dellnitz, O. Junge, K. Padberg, R. Preis, B. Thiere

AOSN Workshop Princeton University, October 30-31, 2003

Motivation

Phase space transport

- □ Many physical examples
- e.g., Geophysical fluid mixing

Atmospheric mixing near the equator

Motivation

Phase space transport

- □ Many physical examples
- e.g., Geophysical fluid mixing

Atmospheric mixing near the equator

Qualitative understanding
 Statistical quantities

Other Examples

Meteorite exchange between Mars & Earth

Other Examples

Meteorite exchange between Mars & Earth

Chemical reaction rates

In This Talk...

- □ Transport problem described
- Two computational techniques
 - (1) Invariant manifolds
 - (2) Almost-invariant sets
- Compare & combine
- Extensions and future work

Transport

 \Box Describe transport of phase points on a k-dimensional manifold $\mathcal M$

Transport

- \Box Describe transport of phase points on a k-dimensional manifold $\mathcal M$
- $\Box \ \mathcal{M}$ could be, e.g., the ocean surface, an energy shell, or a Poincaré surface-of-section

Transport

- \Box Describe transport of phase points on a k-dimensional manifold $\mathcal M$
- $\Box \ \mathcal{M}$ could be, e.g., the ocean surface, an energy shell, or a Poincaré surface-of-section
- \Box We look first at k = 2 for autonomous systems
- Paper: Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, R., Thiere [2003]

Consider a volume- and orientation-preserving map

 $f: \mathcal{M} \to \mathcal{M},$

on some compact set $\mathcal{M} \subset \mathbb{R}^2$ with volume measure μ . e.g., f may be a discretization of an autonomous flow.

Consider a volume- and orientation-preserving map

 $f: \mathcal{M} \to \mathcal{M},$

on some compact set $\mathcal{M} \subset \mathbb{R}^2$ with volume measure μ . e.g., f may be a discretization of an autonomous flow. $\Box \mathcal{M}$ is **partitioned into regions** $R_i, i = 1, \ldots, N_R$, such that

$$\mathcal{M} = \bigcup_{i=1}^{N_R} R_i$$
 and $\mu(R_i \bigcap R_j) = 0$ for $i \neq j$.

Consider a volume- and orientation-preserving map

 $f: \mathcal{M} \to \mathcal{M},$

on some compact set $\mathcal{M} \subset \mathbb{R}^2$ with volume measure μ . e.g., f may be a discretization of an autonomous flow. $\Box \mathcal{M}$ is **partitioned into regions** $R_i, i = 1, \ldots, N_R$, such that

$$\mathcal{M} = \bigcup_{i=1}^{N_R} R_i$$
 and $\mu(R_i \bigcap R_j) = 0$ for $i \neq j$.

Initially, R_i is uniformly covered with species S_i . i.e., Species type indicates where a point was initially.

Describe the distribution of species S_i throughout the regions R_j at any future iterate n > 0.

Describe the distribution of species S_i throughout the regions R_j at any future iterate n > 0.

Transport Quantities

Quantities of interest:

 $T_{i,j}(n) \equiv$ the total amount of species S_i contained in region R_j immediately after the *n*-th iterate $= \mu(f^{-n}(R_j) \cap R_i)$

Transport Quantities

Quantities of interest:

 $T_{i,j}(n) \equiv$ the total amount of species S_i contained in region R_j immediately after the *n*-th iterate $= \mu(f^{-n}(R_j) \cap R_i)$

Our goal:

Compute the $T_{i,j}(n)$ up to some n_{\max}

Computational Approaches

Compare & combine two computational approaches

Computational Approaches

Compare & combine two computational approaches

1) Invariant manifolds of fixed points, lobe dynamics; co-dimension one objects which bound regions, etc.
 MANGEN: Manifold Generation, Lekien etc

Computational Approaches

Compare & combine two computational approaches

- 1) Invariant manifolds of fixed points, lobe dynamics;
 co-dimension one objects which bound regions, etc.
 MANGEN: Manifold Generation, Lekien etc
- 2) Set oriented methods, almost-invariant sets;
 direct computation of regions
 GAIO: Global Analysis of Invariant Objects, Dellnitz etc

Particle in 2-Body Field

- Our chosen example problem: test particles in the gravity field of two masses, m_1 and m_2 , in circular orbit, i.e., the planar, circular restricted three-body problem with mass ratio $\frac{m_2}{m_1+m_2} \approx 10^{-3}$.
- □ Reduce to 2D map via Poincaré surface-of-section

Particle in 2-Body Field

• Poincaré map $f : \mathcal{M} \to \mathcal{M}$ has regular and irregular components. Large connected irregular component, the "chaotic sea."

To understand the transport of points under the Poincaré map *f*, we consider the invariant manifolds of unstable fixed points

Let $p_i, i = 1, ..., N_p$, denote a collection of saddle-type hyperbolic fixed points for f.

Local pieces of unstable and stable manifolds

Unstable and stable manifolds in red and green, resp.

• Intersection of unstable and stable manifolds define boundaries.

• These boundaries divide phase space into regions, $R_i, i = 1, \ldots, N_R$

□ Local transport: across a boundary

consider small sets bounded by stable & unstable mfds

- They map from entirely in one region to another under one iteration of f
 - $L_{1,2}(1)$ and $L_{2,1}(1)$ are called turnstile lobes

 \Box MANGEN: evolution of a lobe of species S_1 into R_2

insert S1 into R2 movie

Global transport between regions $(T_{i,j}(n))$ is completely described by the dynamical evolution of lobes.

Set Oriented Approach

Overview

Partition phase space into loosely coupled regions

$$R_i, i=1,\ldots,N_R,$$

 \Box Probability is small for a point in a region to leave in a short time under f.

□ These **almost-invariant sets** (AIS's) define macroscopic structures preserved by the dynamics.

 \Box The transport, $T_{i,j}(n)$, between almost-invariant sets can then be determined.

1) discretize the phase space into boxes; model boxes as the vertices and transitions between boxes as edges of a directed graph

2) use graph partitioning methods to divide the vertices of the graph into an optimal number of parts such that each part is highly coupled within itself and only loosely coupled with other parts

3) by doing so, we can obtain AIS's and analyze transport between them

Box Formulation

Create a fine box partition of the phase space
 \$\mathcal{B} = {B_1, \ldots B_q}\$, where \$q\$ could be \$10^7\$+
 Consider a (weighted) \$q\$-by-\$q\$ transition matrix, \$P\$, for our dynamical system, where

$$P_{ij} = \frac{\mu(B_i \cap f^{-1}(B_j))}{\mu(B_i)},$$

the transition probability from B_i to B_j

 $\Box P$ is an approximation of our dynamical system via a finite state Markov chain.

Graph Formulation and Partitioning

 $\Box P$ has a corresponding graph representation where nodes of the graph correspond to boxes B_i .

- □ If $P_{ij} > 0$, then there is an edge between nodes *i* and *j* in the graph with weight P_{ij} .
- Partitioning into AIS's becomes a problem of finding a minimal cut of this graph.

□ **AIS's correspond with key dynamical features** More refined methods like MANGEN can pick up details

The phase space is divided into several invariant and almost-invariant sets.

Using the box formulation and GAIO, the $T_{i,j}(n)$ can be computed for large n. Agrees with MANGEN result.

To speed the computation, box refinements are performed where transport related structures, e.g., lobes, are located.

□ The merging of **statistical** and **geometric** approaches yields a very powerful tool.

- □ The merging of **statistical** and **geometric** approaches yields a very powerful tool.
- Example problem: restricted 3-body problem.
- □ Both find the same regions
 - AIS's, statistical features, are identified with regions, geometric features

Transport between regions determined by images and pre-images of lobes.

- Transport between regions determined by images and pre-images of lobes.
- MANGEN computes only region & lobe boundaries; Stretching of boundaries, memory limits;

 $n_{\rm max} \approx 20$

- Transport between regions determined by images and pre-images of lobes.
- □ MANGEN computes only region & lobe boundaries; Stretching of boundaries, memory limits; $n_{\rm max} \approx 20$
- GAIO uses transition matrix between many boxes; Resolution limited by max box number; aided by box refinement along lobes

 $n_{\rm max} \approx 50$

- Transport between regions determined by images and pre-images of lobes.
- □ MANGEN computes only region & lobe boundaries; Stretching of boundaries, memory limits; $n_{\rm max} \approx 20$
- GAIO uses transition matrix between many boxes; Resolution limited by max box number; aided by box refinement along lobes

 $n_{\rm max} \approx 50$

□ Both approaches in agreement for $T_{i,j}(n)$ over common domain.

□ AIS & lobe dynamics in 3D, 4D, ...

 \Box AIS & lobe dynamics in 3D, 4D, ...

□ AIS for time dependent systems?

application to ocean dynamics

- □ AIS & lobe dynamics in 3D, 4D, ...
- □ AIS for time dependent systems? application to ocean dynamics
 - Software:
 - GAIO for coarse grained picture, transport calculations MANGEN to refine on regions of interest
 - \Rightarrow important for precision navigation

- □ AIS & lobe dynamics in 3D, 4D, ...
- □ AIS for time dependent systems? application to ocean dynamics
 - Software:
 - GAIO for coarse grained picture, transport calculations MANGEN to refine on regions of interest
 - \Rightarrow important for precision navigation
- Merge techniques into single package:
 Box formulation, graph algorithms
 Co-dimension one objects
 Adaptive conditioning based on curvature

Selected References

- Dellnitz, M., O. Junge, W.S. Koon, F. Lekien, M.W. Lo, J.E. Marsden, K. Padberg, R. Preis, S. Ross, & B. Thiere [2003], *Transport in Dynamical Astronomy and Multibody Problems*, preprint.
- Ross, S.D. [2003], Statistical theory of interior-exterior transition and collision probabilities for minor bodies in the solar system, International Conference on Libration Point Orbits and Applications, Girona, Spain.
- Jaffé, C., S.D. Ross, M.W. Lo, J. Marsden, D. Farrelly, & T. Uzer [2002], Statistical theory of asteroid escape rates, Physical Review Letters 89, 011101.
- Koon, W.S., M.W. Lo, J.E. Marsden & S.D. Ross [2001], Resonance and capture of Jupiter comets. Celest. Mech. & Dyn. Astron. 81(1-2), 27–38.
- Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2000] Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469.

For papers, movies, etc., visit the websites:

http://www.cds.caltech.edu/~shane/