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Motivation: application to real data

•Many systems defined from data or large-scale simulations
— experimental measurements, observations

• e.g., from fluid dynamics, biology, social sciences

• Aperiodic, finite-time, finite resolution

— in general, no fixed points, periodic orbits, or other invariant sets
(or their stable and unstable manifolds) to organize phase space
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Motivation: application to real data

• Perhaps can find appropriate analogs to the objects; adapt previous
results to ths setting

• Try some numerical explorations; see what merit furthers study
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Chaotic phase space transport via lobe dynamics

� As our dynamical system, we consider a discrete map1

f : M−→M,

e.g., f = φt+T
t , where M is a differentiable, orientable,

two-dimensional manifold e.g., R2, S2

� To understand the transport of points under the map
f , we consider the invariant manifolds of unstable
fixed points

� Let pi, i = 1, ..., Np, denote a collection of saddle-type
hyperbolic fixed points for f .

1Following Rom-Kedar and Wiggins [1990]
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Partition phase space into regions

� Natural way to partition phase space
• Pieces of Wu(pi) and W s(pi) partition M.
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p1

Unstable and stable manifolds in red and green, resp.
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Partition phase space into regions

• Intersection of unstable and stable manifolds define boundaries.
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Partition phase space into regions

• These boundaries divide the phase space into regions.
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Label mobile subregions: ‘atoms’ of transport

• Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (. . . , R3, R3, [R1], R1, R2, . . .)
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Primary intersection points (pips) and boundaries

� q is a primary intersection point (pip), q̄ is not a pip.

q

pi
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u(pi)
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s(pj)

q-
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Primary intersection points (pips) and boundaries

� Suppose W u(pi) and W s(pj) intersect in the pip q.
Define B ≡ U [pi, q]

⋃
S[pj, q] as a boundary between

“two sides,” R1 and R2.

pi
pj

q

R1

R2

B = U [pi ,q] U S [pj ,q]
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Lobes: the mobile subregions

� Let q0, q1 ∈ W u(pi)
⋂

W s(pj) be two adjacent pips,
i.e., there are no other pips on U [q0, q1] and S[q0, q1].
The region interior to U [q0, q1]

⋃
S[q0, q1] is a lobe.

pi
pj

q0

q1

S [q0,q1]

U [q0,q1]Lobe
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Lobe dynamics: transport across a boundary B

� f−1(q) is a pip. f is orientation-preserving ⇒ there’s at
least one pip on U [f−1(q), q] where the W u(pi), W

s(pj)
intersection is topologically transverse.

R1

R2

q

pi
pj

f -1(q)
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Lobe dynamics: transport across a boundary B

� U [f−1(q), q]
⋃

S[f−1(q), q] forms boundary of two lobes;
one in R1, labeled L1,2(1), or equivalently ([R1], R2),
where f (([R1], R2)) = (R1, [R2]), etc. for L2,1(1)

R1

R2

q

pi
pj

f -1(q)

L2,1(1)

L1,2(1)
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Lobe dynamics: transport across a boundary B

� Under one iteration of f , only points in L1,2(1) can
move from R1 into R2 by crossing B, etc.

� The two lobes L1,2(1) and L2,1(1) are called a turnstile.

R1

R2

q

pi
pj

f -1(q)

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))
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Lobe dynamics: transport across a boundary B

� Essence of lobe dynamics: the dynamics associated
with crossing B is reduced to the dynamics of
the turnstile lobes associated with B.

R1

R2

q

pi
pj

f -1(q)

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))
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Identifying atoms of transport by itinerary

� In a complicated system, can still identify manifolds ...

Unstable and stable manifolds in red and green, resp.
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Identifying atoms of transport by itinerary

� ... and lobes

R1

R2

R3

Significant amount of fine, filamentary structure.
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Identifying atoms of transport by itinerary

� e.g., with three regions {R1, R2, R3},
label lobe intersections accordingly.

• Denote the intersection (R3, [R2])
⋂

([R2], R1) by (R3, [R2], R1)
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Identifying atoms of transport by itinerary

Longer itineraries...
xix



Identifying atoms of transport by itinerary

... correspond to smaller pieces of phase space; horseshoe dynamics, etc
xx



Lobe Dynamics: example

• rest. 3-body problem: chaotic sea contains unstable fixed points.
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Compute a boundary
April 8, 2005 16:9 01254

716 M. Dellnitz et al.
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Fig. 6. Transport using lobe dynamics for the same Poincaré surface of section shown in Fig. 2(b). (a) The boundary B
between two regions is shown as the thick black line, formed by pieces of one branch of the stable and unstable manifolds of
the unstable fixed point p. We can call the region inside of the boundary R1 (in cyan) and the outside R2 (in white). The pips
q and f−1(q) are shown as black dots along the boundary and the turnstile lobes that will determine the transport between
R1 and R2 are shown as colored regions. In (b), we see more details of the turnstile lobes. This is a case of a multilobe,
self-intersecting turnstile discussed in Sec. 3.1. A schematic of this situation is shown in Fig. 4. In this case we define the

turnstile lobes to be L1,2(1) = L
(a)
1,2(1) ∪ L

(b)
1,2(1) ∪ L

(c)
1,2(1) and L2,1(1) = L

(a)
2,1(1) ∪ L

(b)
2,1(1) ∪ L

(c)
2,1(1).

the distance between each point increases exponen-
tially. Since the manifold experiences rapid stretch-
ing as it grows in length, it is necessary to check
the distance between adjacent points and insert new
points if necessary to insure that sufficient spatial
resolution is maintained [Lekien, 2003]. The soft-
ware package mangen is used to implement the
adaptive conditioning of the mesh of points approx-
imating the manifold [Lekien & Coulliette, 2004;
Lekien, 2003]. More points are added where curva-
ture or stretching is high.

4.1.4. Defining the regions and finding
the relevant lobes

The symmetry (28) is useful for defining the regions
and lobes. The first intersection of W u

+(p) with the
axis of symmetry is the natural choice for the pip
q defining the boundary, shown in Fig. 6(a). We
define R1 (in cyan) to be the region bounded by
B = U+[p, q] ∪ S+[p, q], where U+[p, q] and S+[p, q]
are segments of W u

+(p) and W s
+(p), respectively,

between p and q. We define R2 (in white) to be
the complement of R1.

mangen can then be used to compute the turn-
stile lobes L1,2(1) ∪ L2,1(1). The turnstile lobes are
shown as colored regions in the upper half plane of

Fig. 6(a). The first iterate of the turnstile lobes is
shown in the lower half plane of Fig. 6(a) in cor-
responding colors. In the enlarged view, Fig. 6(b),
the turnstile lobes are shown in greater detail. This
is a case of a multilobe, self-intersecting turnstile,
discussed in Sec. 3.1.

The area of the turnstile lobes, i.e. the flux of
phase space across the boundary B (and the trans-
port of species across B for just the first iteration
of the map f), is summarized in Table 1.

4.1.5. Higher iterates of the map

To compute all the transport quantities
T1,1(n), T1,2(n), T2,1(n), and T2,2(n), it is only

Table 1. Flux of phase space across the bound-
ary in terms of canonical area per iterate. Note,

µ(L1,2(1)) is the sum µ(L
(a)
1,2(1)) + µ(L

(b)
1,2(1)) +

µ(L
(c)
1,2(1)). This is the flux in both directions, i.e.

µ(L1,2(1)) = µ(L2,1(1)), since the map f is area-
preserving on M .

µ(L
(a)
1,2(1)) µ(L

(b)
1,2(1)) µ(L

(c)
1,2(1)) µ(L1,2(1))

0.000956 0.000870 0.000399 0.002225
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Transport btwn Two Regions

• The evolution of a lobe of species S1 into R2

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Physical Review Letters

xxiii



Transport btwn Two Regions

1
n = Iterate of Poincare Map

Ph
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e 
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e 

Species Distribution: Species S1 in Region R2
F1,2 = flux of species S1 into region R2 on the nth iterate
T1,2 = total amount of S1 contained in R2 immediately after the nth iterate

10
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Lobe dynamics: fluid example

� Fluid example: time-periodic Stokes flow

streamlines tracer blob

Lid-driven cavity flow
•Model for microfluidic mixer

• System has parameter τf , which we treat as a bifurcation parameter
— critical point τ∗f = 1; above and next few slides show τf > 1

Computations by Mohsen Gheisarieha and Mark Stremler (Virginia Tech)
xxv



Lobe dynamics: fluid example

� Fluid example: Poincaré map

some invariant manifolds of saddles

xxvi



Lobe dynamics: fluid example

� Fluid example: Poincaré map

regions and lobes labeled

xxvii



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob at t = 0

xxviii



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob at t = 5

xxix



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

some invariant manifolds of saddles

xxx



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob at t = 10
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Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob at t = 15

xxxii



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob and manifolds

xxxiii



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob at t = 20

xxxiv



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

material blob at t = 25

xxxv



Stable/unstable manifolds and lobes in fluids

� Fluid example: Poincaré map

• Saddle manifolds and lobe dynamics provide template for motion

xxxvi



Stable/unstable manifolds and lobes in fluids

� Concentration variance; a measure of homogenization
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• Homogenization has two exponential rates: slower one related to lobes
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Braiding of stirrers

� Large-scale braiding provides the faster scale
— and an alternative point-of-view

xxxviii



Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three
types (i) finite order (f.o.): the nth iterate of g is the identity (ii)
pseudo-Anosov (pA): g has dense orbits, Markov partition with tran-
sition matrix A, topological entropy hTN(g) = log(λPF (A)), where
λPF(A) > 1 = Perron-Frobenius eigenvalue of A (iii) reducible: g
contains both f.o. and pA regions

• hTN computed from ‘braid word’, e.g., σ−1σ2

• log(λPF (A)) provides a lower bound on the
true topological entropy

• i.e., non-trivial material lines grow like ` ∼ `0λ
n,

where λ ≥ λTN

xxxix



Identifying ‘ghost rods’: periodic points

tracer blob for τf > 1

• For τf > 1, groups of elliptic and saddle periodic
points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod ⇒

• At τf = 1, points merge into parabolic points

• Below τf < 1, periodic points vanish

xl



Identifying ‘ghost rods’: periodic points

Poincaré section for τf > 1

• For τf > 1, groups of elliptic and saddle periodic
points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod ⇒

• At τf = 1, points merge into parabolic points

• Below τf < 1, periodic points vanish

xli



Identifying ‘ghost rods’: periodic points

Poincaré section for τf > 1

• Periodic points of period 3 ⇒ act as ‘ghost rods’

• Their braid ⇒ hTN = 0.96242 from TNCT

• Actual hflow ≈ 0.964

• ⇒ hTN is an excellent lower bound

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b
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Identifying ‘ghost rods’: periodic points

t

Lo
g(
CV
)

0 25 50 75 100-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

• Homogenization has two exponential rates: slower one related to lobes

• Fast rate due to braiding of ‘ghost rods’ !
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Topological entropy continuity across critical point

1.00

0.95

0.950.900.85 1.00 1.05

topological entropy as a function of τf
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Identifying ‘ghost rods’?

Poincaré section for τf < 1 ⇒ no obvious structure!

• Note the absence of any elliptical islands

• No periodic orbits of low period were found

• Is the phase space featureless?

xlv



Almost-invariant set (AIS) approach

• Take probabilistic point of view (recall, e.g., Oliver Junge’s talk)

• Partition phase space into loosely coupled regions

AISs ≈ “Leaky” regions with a long residence time2

3-body problem phase space is divided into several invariant and almost-invariant sets.

2Dellnitz, Junge, Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
xlvi



Almost-invariant set (AIS) approach

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , for our dynamical
system, where

Pij =
m(Bi ∩ f−1(Bj))

m(Bi)
,

the transition probability from Bi to Bj using, e.g., f = φt+T
t

• P approximates our dynamical system via a finite state Markov chain.
xlvii



Almost-invariant set (AIS) approach

• A set B is called almost invariant over the interval [t, t + T ] if

ρ(B) =
m(B ∩ φ−1(B))

m(B)
≈ 1.

• Can maximize value of ρ over all possible combinations of sets B ∈ B.

• In practice, AIS or relatedly, almost-cyclic sets (ACS), identified via
eigenvectors (of eigenvalues with |λ| ≈ 1) of P or graph-partitioning

• Appropriate for non-autonomous, aperiodic, finite-time settings

xlviii



Identifying ‘ghost rods’: almost-cyclic sets

• Return to τf > 1 case, where periodic points and manifolds exist

• Agreement between AIS boundaries and manifolds of periodic points

• Known previously3 and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

3Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
xlix



Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for τf < 1 ⇒ no obvious structure!

• Return to τf < 1 case, where no periodic orbits of low period known

• Is the phase space featureless?

• Consider transition matrix P
t+τf
t induced by Poincaré map φ

t+τf
t

l



Identifying ‘ghost rods’: almost-cyclic sets

Top six eigenvalues for τf = 0.99 < τ ∗f

li



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 almost-cyclic sets (ACSs) of period 3

• ACS effectively replace compact region bounded by saddle manifolds

• Also a remnant of the global ‘stable and unstable manifolds’ of the
saddle points, even there are no more saddle points

lii



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )
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Identifying ‘ghost rods’: almost-cyclic sets

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid
— Even though the theorems require exactly periodic points!
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Topological entropy vs. bifurcation parameter

1.00

0.95

0.950.900.85 1.00 1.05

topological entropy as a function of τf

• hTN shown for ACS braid on 3 strands
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Eigenvalues/eigenvectors vs. bifurcation parameter

Movie shows change in eigenvector

branch, marked with ‘−�−’ above, as pa-

rameter decreases from a to f ⇒
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Bifurcation of ACSs

For example, braid on 13 strands for τf = 0.92

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

Thurson-Nielsen for this braid provides lower bound on topological entropy
lvii



Bifurcation of ACSs

A 1

A 2

A 3

A 4

B 1

B2
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C 2

C 3

C 4

(a) Initial state

•

A 1

A 2

A 3

A 4

B 1

B2

B3

B4

B5

C1

C 2

C 3

C 4

(b) First half-period

•

A 1

A 2

A 3

A 4

B 5

C4

C3

C2

C1

B4

B3

B2

B1

(c) Second half-period

C2

C3

C4

B5

C1

A4

A3

A2

A1

B4

B3

B2

B1

(d) State after 1 period
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Bifurcation of ACSs

representation of braid

lix



Sequence of ACS braids bounds entropy

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists

lx



Aperiodic, finite-time setting

• Data-driven, finite-time, aperiodic setting

• How do we get at transport?

• Recall the flow, x 7→ φt+T
t (x)

x
φ
t0      

(x)
.

.

t0+T

lxi



Identify regions of high sensitivity of initial conditions

• Small initial perturbations δx(t) grow like

δx(t + T ) = φt+T
t (x + δx(t))− φt+T

t (x)

=
dφt+T

t (x)

dx
δx(t) + O(||δx(t)||2)

x
φ
t0      

(x)
.

.

x + δx δx(t0+T)

.

.

t0+T

φ
t0      

(x + δx)t0+T

δx(t0)

lxii



Identify regions of high sensitivity of initial conditions

• Small initial perturbations δx(t) grow like

δx(t + T ) = φt+T
t (x + δx(t))− φt+T

t (x)

=
dφt+T

t (x)

dx
δx(t) + O(||δx(t)||2)

lxiii



Invariant manifold analogs: FTLE-LCS approach

• The finite-time Lyapunov exponent (FTLE),

σT
t (x) =

1

|T |
log

∥∥∥∥∥dφt+T
t (x)

dx

∥∥∥∥∥
measures the maximum stretching rate over the interval T of trajectories
starting near the point x at time t

• Ridges of σT
t are candidate hyperbolic codim-1 surfaces; finite-time

analogs of stable/unstable manifolds; Lagrangian coherent structures4
280 S.C. Shadden et al. / Physica D 212 (2005) 271–304

(a)σ =
3x4

−4x3
−12x2

+18
12(1+4y2)

. (b) Side view.

(c) Curvature measures evaluated along thex-axis (i.e.,y = 0). (d) Close-up.

Fig. 1. Comparison between ridge definitions. Notice that the second-derivative ridge is slightly shorter than the curvature ridge.

Therefore we can expect the difference between the two measures to be identically zero or non-existent for all
practical purposes. For autonomous systems,σ is constant along a ridge (asymptotically), hence the two definitions
of ridge are always identical for such systems.

2.5. Lagrangian coherent structures

Given the graph of a function, the Hessian only represents the curvature of the graph at local extrema,
therefore defining a ridge in terms of principal curvatures gives a better physical interpretation and is more
intrinsic. However, the notion of a second-derivative ridge is somewhat simpler and more convenient, as we
shall see later in this work. Also, we have shown that a second-derivative ridge is always a subset of a
principal curvature ridge, and moreover the two definitions are nearly identical for all practical purposes. In
addition, the second-derivative definition facilitates computational implementation. Therefore, we define LCS as
follows:

pij pi+1 jpi−1 j

pi j−1

pi j+1

p
′

ij

p
′

i+1 j

p
′

i−1 j

p
′

i j−1

p
′

i j+1

4cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005
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Invariant manifold analogs: FTLE-LCS approach

lxv



Invariant manifold analogs: FTLE-LCS approach
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Invariant manifold analogs: FTLE-LCS approach

•We can define the FTLE for Riemannian manifolds3

σT
t (x) =

1

|T |
ln
∥∥∥Dφt+T

t

∥∥∥ .
=

1

|T |
log

max
y 6=0

∥∥∥Dφt+T
t (y)

∥∥∥
‖y‖


with y a small perturbation in the tangent space at x.

pi

p1

p2

p3

pj
pN

p
′

i

p
′

1

p
′

2

p
′

3

p
′

j

p
′

N pi

p1 p2

pj

v1

v2

vj

p
′

i

p
′

1

p
′

2

p
′

j

v
′

1

v
′

2

v
′

j

M

Tpi
M

Tp
′

i
M

3Lekien & Ross [2010] Chaos
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Transport barriers: LCS

• Ridges correspond to dynamical barriers3 or Lagrangian coherent struc-
tures (LCS): repelling surfaces for T > 0, attracting for T < 0

cylinder Moebius strip
Each frame has a different initial time t

3Lekien & Ross [2010] Chaos
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Atmospheric flows: Antarctic polar vortex

ozone data
lxix



Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)
lxx



Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS
lxxi



Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting

lxxii



Atmospheric flows and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Hurricane Andrea, 2007

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Tallapragada & Ross [2011]

lxxiii



Atmospheric flows and lobe dynamics

Hurricane Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
lxxiv



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
lxxv



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
lxxvi



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
lxxvii



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
lxxviii



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates
lxxix



Coherent sets and set-based definition of FTLE

• Consider, e.g., a flow φt+T
t in (x1, x2) ∈ R2.

• Treat the evolution of set B ⊂ R2 as evolution of two random variables
X1 and X2 defined by probability density function f (x1, x2), initially
uniform on B, f = 1

µ(B)
XB, with XB the characteristic function of B.

• Under the action of the flow φt+T
t , f is mapped to Pf where P is the

associated Perron-Frobenius operator.

• Let I(f ) be the covariance of f and I(Pf ) the covariance of Pf .

Deformation of a disk under the flow during [t, t + T ]
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Coherent sets and set-based definition of FTLE

•Definition. The covariance-based FTLE of B is

σI(B, t, T ) =
1

|T |
log

(√
λmax(I(Pf ))√
λmax(I(f ))

)
.

• Reduces to usual definition of FTLE in the limit that the linearization
approximation (i.e., line-stretching method) is valid

Deformation of a disk under the flow during [t, t + T ]
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Coherent sets and set-based definition of FTLE

• The coherence of a set B during [t, t + T ] is σI(B, t, T ).

• A set B is almost-coherent during [t, t + T ] if σI(B, t, T ) ≈ 0.

• Captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain.

• This definition also can identify non-mixing translating sets.

• Values of σI(B, t, T ) determine the family of sets of various
degrees of coherence.

• Need to set a heuristic threshold on the value of σI(B, t, T ) to determine
coherent sets.

• Notice, coherent sets will be separated by ridges of high FTLE, i.e., LCS
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Coherent sets in lid-driven cavity flow

FTLE from line-stretching (conventional) during [0, τf ]
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Coherent sets in lid-driven cavity flow

FTLE from covariance-based approach during [0, τf ]
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Coherent sets in lid-driven cavity flow

Sets of coherences σI(0, τf ) < 1.6
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Coherent sets in lid-driven cavity flow

Compare with AIS from second eigenvector of P
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Coherent sets in the atmosphere

• FTLE from covariance during 24 hours starting 09:00 1 May 2007
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Coherent sets in the atmosphere

• Coherent sets during 24 hours starting 09:00 1 May 2007
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Final words on chaotic transport

� What are robust descriptions of transport which work in
data-driven aperiodic, finite-time settings?

• Possibilities: finite-time lobe dynamics / symbolic dynamics may work
— finite-time analogs of homoclinic and heteroclinic tangles

• Probabilistic, geometric, and topological methods
— invariant sets, almost-invariant sets, almost-cyclic sets, coherent
sets, stable and unstable manifolds, Thurston-Nielsen classification,
FTLE, LCS

•Many links between these notions — e.g., LCS locate analogs of
stable and unstable manifolds
— boundaries between coherent sets are naturally LCS
— periodic points ⇒ almost-cyclic sets
— their ‘stable/unstable invariant manifolds’ ⇒ ???

lxxxix



The End

For papers, movies, etc., visit:
www.shaneross.com
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