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Motivation: complex fluid motion, mixing, and controlModeling the atmosphere

Hurricane Andrew
4
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Motivation: complex fluid motion, mixing, and control

Atmosphere over North America. Lagrangian coherent boundaries: orange = repelling, blue = attracting
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Motivation: complex fluid motion, mixing, and control

Table top fluid experiment. Lagrangian coherent boundaries: red = repelling, blue = attracting
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Motivation: complex fluid motion, mixing, and control

• Selectively ’jumping’ between coherent sets using control

•Moving between mobile subregions of different finite-time itineraries

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

v



Motivation: complex fluid motion, mixing, and control

• Selectively ’jumping’ between coherent sets using control

•Moving between mobile subregions of different finite-time itineraries

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

vi



Motivation: complex fluid motion, mixing, and control

• Selectively ’jumping’ between coherent sets using control

•Moving between mobile subregions of different finite-time itineraries

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

1

2

vii



Motivation: complex fluid motion, mixing, and control

• Selectively ’jumping’ between coherent sets using control

•Moving between mobile subregions of different finite-time itineraries

green=uncontrolled, red=controlled
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Stirring fluids with solid rods
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Topological chaos through braiding of stirrers

� Topological chaos is ‘built in’ the flow due to
the topology of boundary motions
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Thurston-Nielsen classification theorem

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three
types (i) finite order (f.o.): the nth iterate of g is the identity (ii)
pseudo-Anosov (pA): g has Markov partition with transition matrix A,
topological entropy hTN(g) = log(λPF (A)), where λPF(A) > 1 (iii)
reducible: g contains both f.o. and pA regions

• hTN computed from ‘braid word’, e.g., σ−1
1 σ2

• log(λPF (A)) provides a lower bound on the
true topological entropy
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Topological chaos in a viscous fluid experiment
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Topological chaos in a viscous fluid experiment

xiii



‘Stirring’ with fluid particles
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Ghost rods in microfluidics mixer

� Lid-driven cavity flow, periodic vector field

streamlines for τf = 1 tracer blob (τf > 1)

• t ∈ [nτf , (n + 1)τf/2), right two points exchange clockwise

• t ∈ [(n+1)τf/2, (n+1)τf ), left two points exchange counter-clockwise

• System has parameter τf , which we treat as a bifurcation parameter
— critical point τ∗f = 1

xv



Stirring protocol ⇒ braid ⇒ topological entropy

• Consider period-τf map

• For τf = 1, period 3 points act as ‘ghost rods’

• Their braid ⇒ hTN = 0.96242 from TNCT

• Actual hflow ≈ 0.964 obtained numerically

• ⇒ hTN is an excellent lower bound

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

xvi



Identifying ‘ghost rods’: periodic points

period-τf map for τf just above 1

• At τf = 1, parabolic period 3 points of map

• τf > 1, elliptic / saddle points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod ⇒

• τf < 1, periodic points vanish
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Topological entropy continuity across critical point

� Consider τf < 1
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topological entropy as a function of τf
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Identifying ‘ghost rods’?

period-τf map for τf < 1 ⇒ no ‘obvious’ structure

• Note the absence of any elliptical islands

• No periodic orbits of low period were found

• In practice, even when such low-order periodic orbits exist, they can be
difficult to identify

• But phase space is not featureless
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Almost-cyclic set approach

• Identify almost-invariant sets (AISs, as discussed in previous talks)

• Relatedly, almost-cyclic sets (ACSs) (Dellnitz & Junge [1999])

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q Ulam-Galerkin matrix, P , where

Pij =
m(Bi ∩ f−1(Bj))

m(Bi)
,

the transition probability from Bi
to Bj using, e.g., f = φt+T

t , com-
puted numerically

• Identify AISs and ACS via spectrum of P
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Identifying ‘ghost rods’: almost-cyclic sets

• For τf > 1 case, where periodic points and manifolds exist...

• Agreement between ACS boundaries and manifolds of periodic points

• Known previously1 and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

1Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
xxi
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Identifying ‘ghost rods’: almost-cyclic sets

period-τf map for τf < 1 ⇒ no ‘obvious’ structure

• Return to τf < 1 case, where no periodic orbits of low period known

•What are the AISs and ACSs here?

• Consider P
t+τf
t induced by family of period-τf maps φ

t+τf
t , t ∈ [0, τf )
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Identifying ‘ghost rods’: almost-cyclic sets

Top eigenvectors for τf = 0.99 reveal hierarchy of phase space structures
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Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 ACSs of period 3

• ACS effectively replace periodic orbits for TNCT
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Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )
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Identifying ‘ghost rods’: almost-cyclic sets
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Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of phase space
— But, theorems apply only to periodic points
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.
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Topological entropy vs. bifurcation parameter
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topological entropy as a function of τf

• hTN shown for ACS braid on 3 strands
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Eigenvalues/vectors vs. bifurcation parameter

Consider change in eigenvectorz along

continuous branch marked with ‘−�−’

above (from a to f), as τf decreases ⇒
zInspired by Junge, Marsden, Mezic [2004]
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Bifurcation of ACSs — braid on 13 strands

For example, braid on 13 strands for τf = 0.92

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

Thurson-Nielsen for this braid provides lower bound on topological entropy
xxx



Bifurcation of ACSs — braid on 13 strands
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(d) State after 1 period
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Bifurcation of ACSs — braid on 13 strands

representation of braid
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Sequence of ACS braids bounds entropy

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0.9

0.92

0.94

0.96

0.98

1

10 strands

13 strands
16 strands 3 strands

8 strands

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists
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Non-autonomous, non-periodic, finite-time setting

• Data-driven, finite-time, non-periodic setting
— e.g., from experimental fluid measurements, observations

• Are there, e.g., braids in realistic fluid flows?

LCSs: orange = repelling, blue = attracting
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Atmospheric flows: hurricanes

orange = repelling curves, blue = attracting curves satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Ross &Tallapragada [2012]
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Atmospheric flows: hurricanes

Andrea at one snapshot; Lagrangian coherent boundaries shown
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Atmospheric flows: lobe dynamics to find braids

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows: lobe dynamics to find braids

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows: lobe dynamics to find braids

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xxxix



Atmospheric flows: lobe dynamics to find braids

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
xl



Atmospheric flows: lobe dynamics to find braids

Sets behave as lobe dynamics dictates ⇒ form braid, but no periodicity
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Atmospheric flows: Antarctic polar vortex

ozone data
xlii



Atmospheric flows: Antarctic polar vortex

ozone data + Lagrangian coherent boundaries (red = repelling, blue = attracting)
xliii



Speculation: trends in eigenvalues/vectors for prediction

• Different eigenvectors can correspond to dramatically different behavior.

• Some eigenvectors increase in importance while others decrease

• Can we predict dramatic changes in system behavior?

• e.g., splitting of the ozone hole in 2002, using only data before split
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Final words

� Almost-cyclic sets enable application of the TNCT even
in the absence of low-order periodic orbits.

• For engineering systems, can design for mixing using ACSs

• For natural systems, ghost rod/ACS paradigm may aid interpretation

� Connection between finite-time lobe dynamics and braids

� Bifurcation of phase space structure revealed through
bifurcation of AIS/ACSs, braid bifurcations, etc.

� Prediction of dramatic changes in system behavior using
changing order of eigenvectors?
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The End

For papers, movies, etc., visit:
www.shaneross.com
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