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Abstract Invariant manifolds play an important role
in organizing global dynamical behaviors. For exam-
ple, it is found that in multi-well conservative sys-
tems where the potential energy wells are connected by
index-1 saddles, the motion between potential wells is
governed by the invariant manifolds of a periodic orbit
around the saddle. In two-degree-of-freedom systems,
such invariant manifolds appear as cylindrical conduits
which are referred to as transition tubes. In this study,
we apply the concept of invariantmanifolds to study the
transition between potential wells in not only conser-
vative systems, but more realistic dissipative systems,
by solving respective proper boundary value problems.
The example system considered is a two-mode model
of the snap-through buckling of a shallow arch. We
define the transition region, Th , as a set of initial con-
ditions of a given initial Hamiltonian energy h with
which the trajectories can escape from one potential
well to another, which in the example system corre-
sponds to snap-through buckling of a structure. The
numerical results reveal that in the conservative system,
the boundary of the transition region, ∂Th , is a cylin-
der, while in the dissipative system, ∂Th is an ellipsoid.
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1 Introduction

Escape or transition between potential wells is found in
a number of important systems, such as snap-through
buckling of curved structures [1–5], chemical reactions
[6–10], celestial mechanics [11–13], and capsize of
floating structures [14,15], to name but a few. The pre-
diction of transition plays an important role in both uti-
lization and evasion. In a one-degree-of-freedom sys-
tem, the only possible escape route out of a well is
via a local hilltop of the potential energy. The situ-
ation becomes more complicated for higher degree of
freedom systems, since there are infinitely many routes
to escape, generally via index-1 saddles connecting the
potentialwells. The transitionboundary for the possible
escape trajectories in conservative higher-dimensional
systems has been demonstrated to be the stable invari-
ant manifold of a normally hyperbolic invariant man-
ifold (NHIM), a center manifold around the index-1
saddle [9], whose linearization has at least one pair
of purely imaginary eigenvalues. For a given energy,
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the trajectories inside the stable manifold can escape
from the potential well, while those just outside the sta-
ble manifold bounce back from the saddle and do not
escape the potentialwell. Thus, the generalwayof com-
puting the transition boundary in conservative systems
is to find theNHIMat a fixed energy associatedwith the
index-1 saddle and then compute its stable and unsta-
ble invariant manifolds. In the two-degree-of-freedom
case, the NHIM is a collection of periodic orbits, where
each orbit corresponds to a choice of energy, and the
corresponding stable manifold is geometrically cylin-
drical and sometimes called a transition tube. Thus, the
computation of the transition boundary in the conserva-
tive system has two steps: the computation of a NHIM
and the globalization of the corresponding invariant
manifold.

Mechanical systems with dissipation. However, the
situation for a system with dissipation added is less
well understood. When energy dissipation is incorpo-
rated, the bound orbits comprising a NHIM at con-
stant energy no longer exist which makes the classical
method of computing the transition boundary fail for
dissipative systems. Thus, a new framework must be
established for dissipative systems. Reference [1] pro-
posed abisectionmethod tofind the transitionboundary
on a specific Poincaré section for both conservative and
dissipative systems. The whole phase space structure
that governs the transition was not discussed, although
it can be obtained by selecting a collection of Poincaré
sections. This method is versatile, but can be inefficient
if too many Poincaré sections are considered or the
shape of the transition boundary on a Poincaré section
is irregular and distorted. The authors [16] summarized
the geometry of phase space structures that governs the
escape from potential wells in somewidely known sys-
tems with two degrees of freedom where gyroscopic
and dissipative forces have been added. They found
that the transition boundary for a specific given initial
energy goes from a cylindrical tube in the conserva-
tive system to an ellipsoid in the dissipative system,
referred to as the transition tube and transition ellip-
soid, respectively. While the transition tube is the sta-
ble invariant manifold of the periodic orbit of the initial
energy in the conservative system, the transition ellip-
soid is a subset of the stable invariant manifold of the
saddle equilibrium point in the dissipative system. The
previous paper discussed the linearized dynamics [16].
These topological results carry over to the nonlinear

setting via the stable manifold theorem [17–19] and a
theorem of Moser [20,21], for the dissipative and con-
servative cases, respectively. This paper aims to extend
to the nonlinear setting using the invariant manifold
perspective.

Invariant manifolds of hyperbolic equilibria. The con-
cept of invariant manifolds is crucial for understand-
ing the characteristics of a dynamical system. In gen-
eral, the global invariant manifold cannot be obtained
analytically. Thus, numerical and computational algo-
rithms are necessary. Suppose we have a continuous
dynamical system written as a set of autonomous ordi-
nary differential equations,

ẋ = f (x), (1)

where x ∈ R
n and the vector field f : Rn → R

n is
sufficiently smooth. Here, the dot over the quantity is
the derivative with respect to time t ∈ R. For conser-
vative systems, the transition boundary is governed by
the stable and unstable invariantmanifolds of the center
manifold, a NHIM, associated with an index-1 saddle
equilibrium point. The literature for the transition in
the conservative case is well developed. However, for
a system with dissipation included, we consider the
case where the equilibrium point becomes hyperbolic;
that is, all eigenvalues leave the imaginary axis. If we
denote the equilibrium point as xe, i.e., f (xe) = 0, its
Jacobian matrix Df (xe) has k eigenvalues with nega-
tive real part and n − k eigenvalues with positive real
part. The eigenvectors corresponding to the eigenval-
ues with negative and positive real parts are denoted by
ui and vi , respectively. Thus, the spaces spanned by ui
and vi are referred to stable and unstable subspaces of
the linearized system, denoted by Es and Eu , which
are defined by,

Es = span{u1, u2, · · · , uk},
Eu = span{v1, v2, · · · , vn−k}. (2)

From the Theorem of the Local Stable and Unstable
Manifold [17–19], there exists a k-dimensional invari-
ant local stable manifold and a (n − k)-dimensional
invariant unstable manifold, denoted by Ws

loc(xe) and
Wu

loc(xe), which are tangent to Es and Eu at xe, respec-
tively. Thinking in terms of computation, after the local
stable and unstable invariant manifolds are established,
the global stable and unstable invariant manifolds can
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be grown from the corresponding local invariant man-
ifold [17–19,22] which are defined by,

Ws(xe) =
{
x ∈ R

n | lim
t→+∞ φt (x) = xe

}

=
⋃
t�0

φt (W
s
loc(xe)),

Wu(xe) =
{
x ∈ R

n | lim
t→−∞ φt (x) = xe

}

=
⋃
t�0

φt (W
u
loc(xe)),

(3)

where φt is the flow map of the system (1). From
the definitions of the invariant manifolds in (3), it is
intuitive to compute the global invariant manifold by
numerical integration using a collection of initial con-
ditions on a (k − 1)-dimensional hyper-sphere with
a small radius δ centered at xe in the corresponding
subspace. This idea works well for a one-dimensional
invariant manifold of the equilibrium point embed-
ded in any dimensional space [23]. However, some
challenges [24] may appear when computing higher-
dimensional invariant manifolds, such as large aspect
ratios of the manifold surface due to the significant
differences in the magnitude of the real part of the
eigenvalues leading trajectories on the manifold to be
attracted to the most stable direction [25]. In this case,
directly growing the invariant manifold from the local
initial sphere is impractical. Other methods can be
found in a reviewpaper [22] about computing the global
invariant methods, and interested readers are referred
therein for more details.

Computing global invariantmanifolds. Reference [24]
presents the approach of computing the global invari-
ant manifolds of a hyperbolic point as a family of
orbit segments, solving a suitable two-point boundary
value problem (BVP). It was applied to some exam-
ples to compute a two-dimensional invariant manifold
formed by a family of geodesic level sets. Starting
from another perspective, similar to the cell-mapping
method, a box covering technique [26,27] was devel-
oped to compute invariant manifolds. In this approach,
a subdivision algorithm is used to produce the local
invariant manifold first, and then, a box-oriented con-
tinuation technique is applied to extend it to the global
manifold. Theoretically, this technique is applicable to
compute invariant manifolds of arbitrary dimension.

However, due to the large number of boxes in high-
dimensional systems which slows down the computa-
tion, only moderate-dimensional problems are consid-
ered in practice. The Lagrangian descriptor [28,29] is
a trajectory-based diagnostic method, originally devel-
oped in the context of transport in fluid mechanics, to
detect invariant manifolds and invariant manifold-like
structures [30,31]. It measures the geometrical proper-
ties of particle trajectories, such as the arc length,within
a fixed forward and backward time starting at given
initial conditions. Since it is an integration method, its
computational expenses still need to be examined.

Transition region boundary across an index-1 saddle
with dissipation computed via its stable global invari-
antmanifold. In this study,we present an approach that
systematically identifies all the trajectories which will
cross fromone side of an index-1 saddle to the other, for
instance, from one potential well to another. While we
do this in the context of a specific physical situation (the
snap-through buckling of a shallow arch), the approach
is quite general.We define the transition region in phase
space,Th , as the set of initial conditions of a given initial
Hamiltonian energy h with which the trajectories can
escape from one potential well to another. The numer-
ical results reveal that in the two-degree-of-freedom
conservative version of the system, the boundary of
the transition region, ∂Th , is topologically a cylinder,
while in the dissipative system, ∂Th is topologically a
sphere, that is, a cylinder with the “ends closed.” The
one-parameter family of boundaries, ∂Th with param-
eter h ≥ 0, can be obtained by solving a proper BVP.
The BVP is implemented using the numerical package
COCO [32].

2 Example two-degree-of-freedom system:
Snap-through of a shallow arch

We use a discretized model of the snap-through buck-
ling of a continuous shallow arch to illustrate the com-
putation the transition boundary from the perspective
of a stable invariant manifold. As will be seen below,
the resulting potential energy surface is topologically
equivalent to several other systems, including chemical
systems.

We consider an arch of length L , width b, and thick-
ness d. For a slender arch, it allows us to adopt the
Euler–Bernoulli beam theory taking account the von
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Kármán-type geometrical nonlinearity [33,34] to char-
acterize the nonlinear deformations. Considering in-
plane immovable constraints at each end of the arch,
the deflection of the arch is governed by an integro-
differential equation [1,35],

ρA
∂2w

∂t2
+ cd

∂w

∂t
+ E I

(
∂4w

∂x4
− ∂4w0

∂x4

)

+
[
NT − E A

2L

∫ L

0

((
∂w

∂x

)2
−

(
∂w0

∂x

)2
)
dx

]
∂2w

∂x2
= 0,

(4)

where w and w0 are the transverse displacement and
initial deflection (or imperfection) of the arch, respec-
tively; A and I are the cross-sectional area andmoment
of inertia which result in axial stiffness and bending
stiffness, denoted by E A and E I , respectively; and ρ

is the mass density. Due to the immovable ends, the
external axial force, which can be introduced to con-
trol the initial equilibrium shapes, cannot be applied. It
will be replaced by the thermal loading in this study,
denoted by NT . Finally, cd is the coefficient of the lin-
ear viscous damping. In this analysis, we consider a
clamped–clamped arch whose boundary conditions are
given by.

w = 0 and
∂w

∂x
= 0 at x = 0, L . (5)

Typically, the symmetric snap-through of a shallow
arch is a classic example of saddle-node bifurcation in
a slender arch, while in the case of an arch which is not
shallow, the snap-through is asymmetric corresponding
to a subcritical pitchfork bifurcation [1,35–38]. To cap-
ture the asymmetrical deformation, a two-mode trun-
cation is utilized. Thus, the deformation and the initial
imperfection can be written by,

w(x, t) = X (t)φ1(x) + Y (t)φ2(x),

w0(x) = γ1φ1(x) + γ2φ2(x),
(6)

where φ1 and φ2 are the first two-mode shapes with the
following forms,

φn = αn

[
sinh

βnx

L
− sin

βnx

L

+δn

(
cosh

βnx

L
− cos

βnx

L

)]
,

δn = sinh βn − sin βn

cosβn − cosh βn
,

cosβn cosh βn = 1,

α1 = −0.6186, α2 = −0.6631. (7)

Substituting the two-mode shape approximation in
(6) to (4), and applying the Galerkin method, one
can obtain the following nonlinear ordinary differen-
tial equations,

M1 Ẍ + C1 Ẋ + K1 (X − γ1) − NT G1X

− E A

2L
G2
1

(
γ 2
1 X − X3

)
− E A

2L
G1G2

(
γ 2
2 X − XY 2

)
= 0,

M2Ÿ + C2Ẏ + K2 (Y − γ2) − NT G2Y

− E A

2L
G2
2

(
γ 2
2 Y − Y 3

)
− E A

2L
G1G2

(
γ 2
1 Y − X2Y

)
= 0,

(8)

where the coefficients are defined by,

(Mi ,Ci ) = (ρA, cd)
∫ L

0
φ2
i dx,

Ki = E I
∫ L

0

(
∂2φi

∂x2

)2

dx,

Gi =
∫ L

0

(
∂φi

∂x

)2

dx .

(9)

Note that (8) can also be obtained from Lagrange’s
equations,

d

dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
= −Ci q̇i , i = 1, 2, (10)

where q1 = X and q2 = Y , and the Lagrangian func-
tion is given by,

L(X,Y, Ẋ , Ẏ ) = T (Ẋ , Ẏ ) − V(X,Y ), (11)

where T and V represent the kinetic energy and poten-
tial energy, respectively, given by,

T (Ẋ , Ẏ ) = 1

2
M1 Ẋ

2 + 1

2
M2Ẏ

2,

V(X,Y ) = −K1γ1X − K2γ2Y + 1

2
K1X

2

+1

2
K2Y

2 − 1

2
NT

(
G1X

2 + G2Y
2
)
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− E A

2L
G2

1

(
1

2
γ 2
1 X

2 − 1

4
X4

)

− E A

2L
G2

2

(
1

2
γ 2
2 Y

2 − 1

4
Y 4

)

− E A

2L

G1G2

2

(
γ 2
2 X

2 + γ 2
1 Y

2 − X2Y 2
)

.

(12)

Potential energy surface and links with chemistry. A
typical form of the potential energy surface is shown in
Fig. 1(a), where W1 and W2 are within the two stable
wells; S1 and S2 are two index-1 saddle points; and H
is the unstable hilltop (an index-2 saddle).

For an equilibrium state, the system might be at rest
in a position of stable equilibrium, such as point W1.
If the system is given a perturbation, for example, an
impact force, snap-through buckling might occur and
it can transition to the the remote equilibrium at point
W2. In general, the motion between the potential wells
most likely occurs via the low-energy routes via saddle
S1 or S2, typically avoiding H, since H is a potential
energy maximum. When a small geometrical imper-
fection in both modes is incorporated, the symmetry of
the potential energy surface is broken, as shown in Fig.
1(b). In the numerical examples, we will consider an
imperfect shallow arch.

The potential energy surface shown is topolog-
ically equivalent to that in several two-degree-of-
freedom problems in chemistry, namely isomerization
[2,39,40], double proton transfer [41–44], and other
chemical reactions [45].

Hamiltonian formulation with dissipation. Instead of
using the equations of motion from a Lagrangian per-
spective, in the following analysis, we put the prob-
lem to aHamiltonian systemwhich automatically gives
first-order ordinary differential equations. Thus, we
define the generalized momenta,

pi = ∂L
∂q̇i

= Mi q̇i , (13)

so pX = M1 Ẋ and pY = M2Ẏ , in which case the
kinetic energy is

T (pX , pY ) = 1

2M1
p2X + 1

2M2
p2Y , (14)

and the Hamiltonian is

H(X,Y, pX , pY ) = T (pX , pY ) + V(X,Y ), (15)

and Hamilton’s equations (with damping) [46] are

Ẋ = ∂H
∂pX

= pX
M1

, Ẏ = ∂H
∂pY

= pY
M2

,

ṗX = −∂H
∂X

− CH pX = − ∂V
∂X

− CH pX ,

ṗY = −∂H
∂Y

− CH pY = −∂V
∂Y

− CH pY ,

(16)

where

∂V
∂X

=K1 (X − γ1) − NT G1X − E A

2L
G2
1

(
γ 2
1 X − X3

)

− E A

2L
G1G2

(
γ 2
2 X − XY 2

)
,

∂V
∂Y

=K2 (Y − γ2) − NT G2Y − E A

2L
G2
2

(
γ 2
2 Y − Y 3

)

− E A

2L
G1G2

(
γ 2
1 Y − X2Y

)
,

(17)

and CH = C1/M1 = C2/M2 is the damping coeffi-
cient in the Hamiltonian system which can be easily
found by comparing (8) and (16), and using the rela-
tions of Mi and Ci in (9).

3 Linearized dynamics around the equilibrium
region

Linearization near the index-1 saddle. As mentioned
before, the transition between the two potential wells
usually occurs around the index-1 saddles. The compre-
hension of local behaviors around such equilibria is an
essential step to understand the transition in the compli-
cated nonlinear system. For the geometrical and mate-
rial parameters used later in the numerical examples, S1
has lower potential energy than S2. Thus, the potential
energy of S1 determines the critical energy that allows
the existence of transition between the twowells. Here,
we focus on analyzing the linearized dynamics of S1.
We denote the position of S1 by xe = (Xe,Ye, 0, 0)T

and the linearized equations about S1 can be given by,

ẋ = px
M1

, ẏ = py
M2

,

ṗx = A31x + A32y − CH px ,

ṗy = A32x + A42y − CH py,

(18)
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(a) (b)

Fig. 1 Contours of potential energy: (a) the symmetric system,
γ1 = γ2 = 0, (b) with small initial imperfections in both modes,
i.e., γ1 and γ2 are nonzero. Comparing the two cases, we notice

the introduction of the initial imperfections changes the contours
of potential energy from symmetrical to asymmetrical

where (x, y, px , py)T = (X,Y, pX , pY )T − xe and

A31 = − K1 + NTG1 + E AG2
1

(
γ 2
1 − 3X2

e

)
2L

+ E AG1G2
(
γ 2
2 − Y 2

e

)
2L

,

A32 = − E AG1G2XeYe
L

,

A42 = − K2 + NTG2 + E AG2
2

(
γ 2
2 − 3Y 2

e

)
2L

+ E AG1G2
(
γ 2
1 − X2

e

)
2L

.

(19)

We introduce the following non-dimensional quan-
tities,

(
Lx , Ly

) = L

(
1,

√
M1

M2

)
, ω0 =

√−A32

(M1M2)
1
4

,

τ = ω0t, (q̄1, q̄2) =
(

x

Lx
,
y

L y

)
,

( p̄1, p̄2) = 1

ω0

(
px

LxM1
,

py
L yM2

)
,
(
cx , cy

)

= 1

ω2
0

(
A31

M1
,
A42

M2

)
, c1 = CH

ω0
. (20)

Making use of the non-dimensional quantities in (20),
we can rewrite the linearized equations in a non-
dimensional form,

˙̄q1 = p̄1, ˙̄q2 = p̄2,
˙̄p1 = cx q̄1 − q̄2 − c1 p̄1,
˙̄p2 = −q̄1 + cyq̄2 − c1 p̄2.

(21)

Written in matrix form, with column vector z̄ =
(q̄1, q̄2, p̄1, p̄2)T , we have,

˙̄z = Az̄ + Dz̄,

where

A=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
cx −1 0 0
−1 cy 0 0

⎞
⎟⎟⎠ , D=

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 −c1 0
0 0 0 −c1

⎞
⎟⎟⎠ ,

(22)
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are the Hamiltonian part and damping part of the linear
equations, respectively. The resulting quadratic Hamil-
tonian is written as,

H2 = 1
2 p̄

2
1 + 1

2 p̄
2
2 − 1

2cx q̄
2
1 − 1

2cyq̄
2
2 + q̄1q̄2. (23)

3.1 Conservative system

In this part, we discuss the linearized dynamics in
the conservative system (i.e., c1 = CH = 0). It is
straightforward to find that the eigenvalues of the lin-
earized conservative system have the form ±λ and
±iωp, where λ and ωp are positive real numbers with
the following forms,

λ =√
α1, ωp = √−α2, where

α1,2 =
cx + cy ±

√
(cx − cy)2 + 4

2
.

(24)

The eigenvectors corresponding to ±λ are denoted
by u±λ, while the eigenvectors corresponding to ±iωp

are denoted by uωp ± iv(2)
ωp . One can get the specific

forms for the four eigenvectors by a straightforward
derivation as,

u+λ =(1, cx −λ2, λ, cxλ−λ3)T , u−λ =−(1, cx −λ2,−λ, λ3−cxλ)T ,

u(1)
ωp

= (1, cx + ω2
p, 0, 0)

T , u(2)
ωp

= (0, 0, ωp, cxωp + ω3
p)

T .

(25)

To better understand the dynamics in the phase
space, we introduce a linear change of coordinates to
the eigenbasis, i.e.,

z̄ = Cz, (26)

with column vector z = (q1, q2, p1, p2)T . We note
that C is a symplectic matrix, which requires that the
columns be carefully scaled generalized eigenvectors,

C =

⎛
⎜⎜⎜⎜⎝

1
s1

1
s2

− 1
s1

0
cx−λ2

s1

ω2
p+cx
s2

λ2−cx
s1

0
λ
s1

0 λ
s1

ωp
s2

cxλ−λ3

s1
0 cxλ−λ3

s1

cxωp+ω3
p

s2

⎞
⎟⎟⎟⎟⎠, (27)

where s1 and s2 are the rescaling factors defined by
s1 = √

dλ and s2 = √
dωp , respectively, and

dλ = λ[4 − 2(cx − cy)(λ
2 − cx )],

dωp = ωp

2
[4 + 2(cx − cy)(ω

2
p + cx )].

(28)

Notice that the symplectic matrix C should satisfy the
following relation,

CT JC = J, (29)

in which J is the 4 × 4 canonical symplectic matrix,

J =
(

0 I2
−I2 0

)
, (30)

where I2 is the 2 × 2 identity matrix.
Using the new coordinates q1, q2, p1, and p2, the

differential equations of the conservative system can
be converted to,

q̇1 = λq1, ṗ1 = −λp1,

q̇2 = ωp, ṗ2 = −ωpq2,
(31)

and the quadratic Hamiltonian function becomes,

H2 = λp1q2 + 1
2ωp

(
q22 + p22

)
. (32)

The solutions of (31) can be conveniently written as,

q1 = q01e
λt , p1 = p01e

−λt ,

q2 + i p2 =
(
q02 + i p02

)
e−iωpt ,

(33)

where the constants q01 , p
0
1, and q

0
2 + i p02 are the initial

conditions. Note that the two functions

f1 = q1 p1, f2 = q22 + p22,

are constants of motion under the Hamiltonian system
(31), as isH2, being a linear combination of f1 and f2.

The linearized phase space. For small positive h and
c, where h is the value of the Hamiltonian above the
equilibrium point, the equilibrium or bottleneck region
R (sometimes just called the neck region) is determined
by,

H2 = h, and |p1 − q1| ≤ c,
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which is homeomorphic to the product of a 2-sphere
and an interval I ∈ R, S2 × I ; namely, for each fixed
value of p1 − q1 in the interval I = [−c, c], we see
that the equation H2 = h determines a 2-sphere,

λ
4 (q1+ p1)

2+ 1
2ωp(q

2
2 + p22) = h+ λ

4 (p1−q1)
2. (34)

Suppose a ∈ I , then (34) can be rewritten as,

x21 + q22 + p22 = r2, (35)

where x1 =
√

1
2

λ
ωp

(q1 + p1) and r2 = 2
ωp

(h + λ
4a

2),

which defines a 2-sphere of radius r in the three vari-
ables x1, q2, and p2.

The bounding 2-sphere ofR for which p1 − q1 = c
will be called n1 (the “left” bounding 2-sphere), and
where p1 − q1 = −c, n2 (the “right” bounding 2-
sphere). Therefore, ∂R = {n1, n2}. See Fig. 2.

We call the set of points on each bounding 2-sphere
where q1 + p1 = 0 is the equator, and the sets where
q1 + p1 > 0 or q1 + p1 < 0 will be called the northern
and southern hemispheres, respectively.

The linear flow in R. To analyze the flow in R, con-
sider the projections on the (q1, p1)-plane and the
(q2, p2)-plane, respectively. In the first case, we see the
standard picture of a saddle point in two dimensions,
and in the second, of a center consisting of harmonic
oscillator motion. Figure 2 schematically illustrates the
flow. With regard to the first projection, we see that
R itself projects to a set bounded on two sides by the
hyperbolasq1 p1 = h/λ (corresponding toq22+p22 = 0,
see (32)) and on two other sides by the line segments
p1 − q1 = ±c, which correspond to the bounding 2-
spheres, n1 and n2, respectively.

Since q1 p1 is an integral of the equations in R, the
projections of orbits in the (q1, p1)-plane move on the
branches of the corresponding hyperbolas q1 p1 = con-
stant, except in the case q1 p1 = 0, where q1 = 0 or
p1 = 0. If q1 p1 > 0, the branches connect the bound-
ing line segments p1 −q1 = ±c, and if q1 p1 < 0, they
have both end points on the same segment. A check of
equation (33) shows that the orbits move as indicated
by the arrows in Fig. 2.

To interpret Fig. 2 as a flow in R, notice that each
point in the (q1, p1)-plane projection corresponds to a
1-sphere, S1, or circle, inR given by,

q22 + p22 = 2
ωp

(h − λq1 p1).

Of course, for points on the bounding hyperbolic seg-
ments (q1 p1 = h/λ), the 1-sphere collapses to a point.
Thus, the segments of the lines p1−q1 = ±c in the pro-
jection correspond to the 2-spheres bounding R. This
is because each corresponds to a 1-sphere crossed with
an interval where the two end 1-spheres are pinched to
a point.

We distinguish nine classes of orbits grouped into
the following four categories:

1. The point q1 = p1 = 0 corresponds to an invariant
1-sphere S1h , an unstable periodic orbit in R of
energy H2 = h. This 1-sphere is given by,

q22 + p22 = 2
ωp

h, q1 = p1 = 0. (36)

It is an example of a normally hyperbolic invari-
ant manifold (NHIM) (see [47]). Roughly, this
means that the stretching and contraction rates
under the linearized dynamics transverse to the 1-
sphere dominate those tangent to the 1-sphere. This
is clear for this example since the dynamics nor-
mal to the 1-sphere are described by the exponen-
tial contraction and expansion of the saddle point
dynamics. Here, the 1-sphere acts as a “big sad-
dle point.” See the black dot at the center of the
(q1, p1)-plane on the left side of Fig. 2.

2. The four half open segments on the axes, q1 p1 =
0, correspond to four cylinder surfaces of orbits
asymptotic to this invariant 1-sphere S1h either as
time increases (q1 = 0) or as time decreases (p1 =
0). These are called asymptotic orbits, and they are
the stable and the unstable manifolds of S1h . The
stable manifolds, Ws±(S1h), are given by,

q22 + p22 = 2
ωp

h, q1 = 0, p1 arbitrary.

(37)

Ws+(S1h) (with p1 > 0) is the branch entering from
n1, and Ws−(S1h) (with p1 < 0) is the branch enter-
ing from n2. The unstable manifolds, Wu±(S1h), are
given by,

q22 + p22 = 2
ωp

h, p1 = 0, q1 arbitrary.

(38)
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Fig. 2 The flow in the
equilibrium region for the
conservative system has the
form saddle × center. On
the left is shown a
schematic of the projection
onto the (q1, p1)-plane, the
saddle projection. For the
conservative dynamics, the
Hamiltonian function H2
remains constant at h > 0.
Shown are the periodic orbit
(black dot at the center), the
asymptotic orbits (labeled
A), two transit orbits (T),
and two non-transit orbits
(NT)

Wu+(S1h) (with q1 > 0) is the branch exiting from
n2, andWu−(S1h) (with q1 < 0) is the branch exiting
from n1. See the four orbits labeled A of Fig. 2.

3. The hyperbolic segments determined by q1 p1 =
constant > 0 correspond to two solid cylinders of
orbits which cross R from one bounding 2-sphere
to the other, meeting both in the same hemisphere:
the northern hemisphere if they go from p1 −q1 =
+c to p1 − q1 = −c and the southern hemisphere
in the other case. Since these orbits transit from one
realm to another, we call them transit orbits. See
the two orbits labeled T of Fig. 2.

4. Finally, the hyperbolic segments determined by
q1 p1 = constant < 0 correspond to two cylin-
ders of orbits in R each of which runs from one
hemisphere to the other hemisphere on the same
bounding 2-sphere. Thus if q1 > 0, the 2-sphere is
n2 (p1−q1 = −c) and orbits run from the southern
hemisphere (q1 + p1 < 0) to the northern hemi-
sphere (q1 + p1 > 0), while the converse holds if
q1 < 0, where the 2-sphere is n1. Since these orbits
return to the same realm, we call them non-transit
orbits. See the two orbits labeled NT of Fig. 2.

We define the transition region, Th , as the region
of initial conditions of a given initial energy h which
transit fromone side of the neck region to the other. This
is the set of all transit orbits, which has the geometry of
a solid cylinder. The transition region, Th , is made up

of one half which goes to the right (from n1 to n2), Th+,
defined by q1 p1 = constant > 0 with both q1 > 0 and
p1 > 0, and the other half which goes to the left (from
n2 to n1), Th−, defined by q1 p1 = constant > 0 with
both q1 < 0 and p1 < 0. The boundaries are ∂Th+ and
∂Th−, respectively. The closure of ∂Th , ∂Th , is equal to
the boundaries ∂Th+ and ∂Th−, along with the periodic
orbit S1h , i.e., ∂Th− ∪ ∂Th+ ∪ S1h .

In summary, for the conservative case, the bound-
ary of the transition region, ∂Th , has the topology of
a cylinder. The topology of ∂Th will be different for
the dissipative case, as will be shown in later sections.
For convenience, we may refer to ∂Th and ∂Th inter-
changeably.

McGehee representation. McGehee [48], building on
the work of Conley [49], proposed a representation
which makes it easier to visualize the regionR. Recall
that R is a three-dimensional manifold that is homeo-
morphic to S2 × I . In [48], it is represented by a spher-
ical annulus bounded by the two 2-spheres n1, n2, as
shown in Fig. 3(c).

Figure 3(a) is a cross section of R. Notice that this
cross section is qualitatively the same as the saddle pro-
jection illustration in Fig. 2. The full picture (Fig. 3(c))
is obtained by rotating this cross section, as shown in
Fig.3(b), about the indicated axis, where the azimuthal
angle ω roughly describes the angle in the center pro-
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(a) (b) (c)

Fig. 3 (a) The projection onto the (q1, p1)-plane, the saddle
projection, with labels consistent with the text and (b) and (c).
(b) The cross section of the flow in the R region of the energy
surface. The north and south poles of bounding sphere ni are

labeled as Ni and Si , respectively. (c) The McGehee representa-
tion of the flow on the boundaries of the R region, highlighting
the features on the bounding spheres n1 and n2 for h > 0

jection in Fig. 2. The following classifications of orbits
correspond to the previous four categories:

1. There is an invariant 1-sphere S1h , a periodic orbit in
the region R corresponding to the black dot in the
middle of Fig. 3(a). Notice that this 1-sphere is the
equator of the central 2-sphere given by p1 − q1 =
0.

2. Again let n1, n2 be the bounding 2-spheres of
region R, and let n denote either n1 or n2. We
can divide n into two hemispheres: n+, where the
flow enters R, and n−, where the flow leaves R.
There are four cylinders of orbits asymptotic to
the invariant 1-sphere S1h . They form the stable
and unstable manifolds which are asymptotic to the
invariant 1-sphere S1h . Topologically, both invari-
ant manifolds look like two-dimensional cylinders
or “tubes” (S1 × R) inside a three-dimensional
energy manifold. The interior of the stable mani-
folds Ws±(S1h) and unstable manifolds Wu±(S1h) can
be given as follows

int(Ws+(S1h )) = {(q1, p1, q2, p2) ∈ R | p1 > q1 > 0},
int(Ws−(S1h )) = {(q1, p1, q2, p2) ∈ R | p1 < q1 < 0},
int(Wu+(S1h )) = {(q1, p1, q2, p2) ∈ R | q1 > p1 > 0},
int(Wu−(S1h )) = {(q1, p1, q2, p2) ∈ R | q1 < p1 < 0}.

(39)

The exterior of these invariant manifolds can be
given similarly from studying Fig. 3(a) and (b).

3. Let a+ and a− (where q1 = 0 and p1 = 0, respec-
tively) be the intersections of the stable and unsta-
ble manifolds with the bounding sphere n. Then,
a+ appears as a 1-sphere in n+, and a− appears as
a 1-sphere in n−. Consider the two spherical caps
on each bounding 2-sphere given by

d+
1 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = +c, p1 > q1 > 0},
d−
1 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = +c, q1 < p1 < 0},
d+
2 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = −c, p1 < q1 < 0},
d−
2 = {(q1, p1, q2, p2) ∈ R | p1 − q1 = −c, q1 > p1 > 0}.

Since d+
1 is the spherical cap in n+

1 bounded by a+
1 ,

the transit orbits entering R on d+
1 exit on d−

2 of
the other bounding sphere. Similarly, sinced−

1 is the
spherical cap inn−

1 boundedbya−
1 , the transit orbits

leaving on d−
1 have come from d+

2 on the other
bounding sphere. Note that all spherical caps where
the transit orbits pass through are in the interior of
stable and unstable manifold tubes.

4. Let b be the intersection of n+ and n− (where q1 +
p1 = 0). Then, b is a 1-sphere of tangency points.
Orbits tangent at this 1-sphere “bounce off,” i.e.,
do not enter R locally. Moreover, if we let r+ be
a spherical zone which is bounded by a+ and b,
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then non-transit orbits entering R on r+ exit on
the same bounding 2-sphere through r− which is
bounded by a− and b. It is easy to show that all the
spherical zones where non-transit orbits bounce off
are in the exterior of stable and unstable manifold
tubes.

TheMcGehee representation provides an additional,
perhaps clearer, visualization of the dynamics in the
equilibrium region. In particular, the features on the
two spheres, n1 and n2, which form ∂R for a constant
h > 0, can be considered in the dissipative case as well,
and compared with the situation in the conservative
case, as shown for some examples below. The spheres
n1 and n2 can be viewed as spherical Poincaré sections
parameterized by their distance from the saddle point,
c, which reveal the topology of the transition region
boundary, ∂Th , particularly through how the geometry
of a+

i and a−
i (for i = 1, 2) changes as c changes.

3.2 Dissipative system

For the dissipative system, we still use the symplectic
matrix C in (27) to perform a transformation, via (26),
to the symplectic eigenspace, even though this is no
longer the true eigenspace of the dissipative lineariza-
tion matrix A = M + D. The equations of motion in
the symplectic eigenspace are,

ż = �z + z, (40)

where � = C−1MC is the conservative part of the
dynamics, as before, and the transformed damping
matrix is,

 = C−1DC = −ch

⎛
⎜⎜⎝

1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 1

⎞
⎟⎟⎠ . (41)

To analyze the behavior in the dissipative eigenspace
(as opposed to the symplectic eigenspace), the eigen-
values and eigenvectors, βi and uβi , respectively, (i =
1, ..., 4), are,

β1,2 = −δ ∓ 1
2

√
c2h + 4λ2,

uβ1,2 =
(

δ, 0, λ ± 1
2

√
c2h + 4λ2, 0

)T

,

β3,4 = −δ ± iωd ,

uβ3,4 = (
0, ωp, 0,−δ ± iωd

)T
, (42)

where δ = 1
2ch , ωd = ωp

√
1 − ξ2d and ξd = δ/ωp.

Thus, the general (real) solutions are,

q1(t) = k1e
β1t + k2e

β2t , p1(t) = k3e
β1t + k4e

β2t ,

q2(t) = k5e
−δt cosωd t + k6e

−δt sinωd t,

p2(t) = k5
ωp

e−δt (−δ cosωd t − ωd sinωd t) + k6
ωp

e−δt

(ωd cosωd t − δ sinωd t) , (43)

where

k1 =
q01

(
2λ +

√
c21 + 4λ2

)
− c1 p01

2
√
c21 + 4λ2

,

k2 =
q01

(
−2λ +

√
c21 + 4λ2

)
+ c1 p01

2
√
c21 + 4λ2

,

k3 =
p01

(
−2λ +

√
c21 + 4λ2

)
− c1q01

2
√
c21 + 4λ2

,

k4 =
p01

(
2λ +

√
c21 + 4λ2

)
+ c1q01

2
√
c21 + 4λ2

,

k5 = q02 , k6 = p02ωp + q02δ

ωd
.

Taking the total derivative of the Hamiltonian with
respect to time along trajectories and using (40), we
have,

dH2

dt
= − 1

2chλ (q1 + p1)
2 − chωp p

2
2 ≤ 0,

which means the Hamiltonian is generally decreasing
(more precisely, non-increasing) due to damping.

The linear flow in R. Similar to the discussion in the
conservative system, we still choose the same equi-
librium region R to consider the projections on the
(q1, p1)-plane and (q2, p2)-plane, respectively. Differ-
ent from the saddle × center projections in the conser-
vative system, here we see saddle × focus projections
in the dissipative system. The stable focus is a damped
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Fig. 4 The flow in the equilibrium region for the dissipative sys-
tem has the form saddle × focus. On the left is shown the saddle
projection onto the (q1, p1)-plane. The black dot at the origin
represents focus-type asymptotic orbits with only a focus pro-
jection, and thus, oscillatory dynamics decays toward the equi-
librium point. The asymptotic orbits (labeled A) are the saddle-
type asymptotic orbits which are tilted clockwise compared to
the conservative system. They still form the separatrix between

transit orbits (T) and non-transit orbits (NT). The hyperbolas,
q1 p1 = h/λ, are no longer the boundary of trajectories with
initial conditions on the bounding sphere (n1 or n2) due to the
dissipation of the energy. The boundary of the shaded region is
still the fastest trajectories with initial conditions on the bound-
ing sphere, but is not strictly hyperbolas. Note that the saddle
projection and focus projection are uncoupled in this dissipative
system.

oscillator with frequency of ωd = ωp

√
1 − ξ2d . Dif-

ferent classes of orbits can also be grouped into the
following four categories:

1. The point q1 = p1 = 0 corresponds to a focus-
type asymptotic orbit with motion purely in the
(q2, p2)-plane (see black dot at the origin of the
(q1, p1)-plane in Fig. 4).
Such orbits are asymptotic to the equilibrium point
itself, rather than a periodic orbit of energy h as in
the conservative case. Due to the effect of damp-
ing, the periodic orbits on each energy manifold of
energy h do not exist. The 1-sphere S1h still exists,
but is no longer invariant. Instead, it corresponds to
all the initial conditions of initial energy h which
are focus-type asymptotic orbits. The projection of
S1h to the configuration space in the dissipative sys-
tem is the same as the projection of the periodic
orbit in the conservative system.

2. The four half open segments on the lines governed

by q1 = ch p1/(2λ ±
√
c21 + 4λ2) correspond to

saddle-type asymptotic orbits. See the four orbits
labeled A in Fig. 4.

3. The segments which crossR from one boundary to
the other, i.e., from p1 −q1 = +c to p1 −q1 = −c
in the northern hemisphere, and vice versa in the
southern hemisphere, correspond to transit orbits.
See the two orbits labeled T of Fig. 4.

4. Finally, the segments which run from one hemi-
sphere to the other hemisphere on the same bound-
ary, namely which start from p1 − q1 = ±c and
return to the same boundary, correspond to non-
transit orbits. See the two orbits labeled NT of Fig.
4.

As done in Section 3.1, we define the transition
region, Th , as the region of initial conditions of a
given initial energy h which transit from one side of
the neck region to the other. As before, the transi-
tion region, Th , is made up of one half which goes
to the right, Th+, and the other half which goes to
the left, Th−. The boundaries are ∂Th+ and ∂Th−,
respectively. The closure of ∂Th , ∂Th , is equal to the
boundaries ∂Th+ and ∂Th−, along with the focus-
type asymptotic initial conditions S1h , i.e., as before,
∂Th− ∪ ∂Th+ ∪ S1h .
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As shown below, for the dissipative case, the
closure of the boundary of the transition region,
∂Th , has the topology of an ellipsoid, rather than
a cylinder as in the conservative case. As before,
for convenience, we may refer to ∂Th and ∂Th
interchangeably.

McGehee representation. Similar to theMcGehee rep-
resentation for the conservative systemgiven in Section
3.1 to visualize the regionR, here we utilize theMcGe-
hee representation again to illustrate the behavior in
same region for the dissipative system. All labels are
consistent throughout the paper.

Note that since the McGehee representation uses
spheres with the same energy to show the dynamical
behavior in phase space, while the energy of any partic-
ular trajectory in the dissipative system decreases grad-
ually during evolution, Figures 5(b) and 5(c) show only
the initial conditions at a given initial energy.Therefore,
in the present McGehee representation, only the ini-
tial conditions on the two bounding spheres are shown
and discussed in the next part. In addition, the black
dots near the orange dots a±

i (i = 1, 2) in Fig. 5(b)
are the corresponding dots in the conservative system
which are used to show how damping affects the tran-
sition.

The following classifications of orbits correspond to
the previous four categories:

1. 1-sphere S1h exists in the regionR corresponding to
the black dot in themiddle of Fig. 5(b) and the equa-
tor of the central 2-sphere given by p1 − q1 = 0 in
5(c). The 1-sphere gives the initial conditions of the
initial energy h for all focus-type asymptotic orbits.
The same 1-sphere in the conservative system is
invariant under the flow, that is, a periodic orbit of
constant energy h. However, the corresponding S1h
is not invariant in the dissipative system, since the
energy is decreasing during evolution due to the
damping.

2. There are four 1-spheres in the region R starting
in the bounding 2-spheres n1 and n2 which give
the initial conditions for orbits asymptotic to the
equilibrium point. Two of them in n+, labeled by
a+, are stable saddle-type asymptotic orbits, and
the other two in n−, labeled by a−, are unstable
asymptotic orbits, where a+ and a− are given by,

a+
1 ={

(q1, p1, q2, p2) ∈ R| (q1, p1)=(kp, 1)c/(1 − kp)
}
,

a−
1 ={

(q1, p1, q2, p2) ∈ R| (q1, p1)=(−1, kp)c/(1 + kp)
}
,

a+
2 ={

(q1, p1, q2, p2) ∈ R| (q1, p1)=(kp, 1)c/(kp − 1)
}
,

a−
2 ={

(q1, p1, q2, p2) ∈ R| (q1, p1)=(1, −kp)c/(1 + kp)
}
,

(44)

where kp = ch/(2λ +
√
c2h + 4λ2). As shown in

Fig. 5(c), a+ appears as an orange circle in n+, and
a− appears as an orange circle in n−. The corre-
sponding curves for the same energy in the conser-
vative system are shown as black curves.

3. Consider the two spherical caps on each bounding
2-sphere, n1 and n2, given by,

d+
1 ={

(q1, p1, q2, p2)∈R | p1 − q1 =c, q1 > ckp/(1 − kp)
}
,

d−
1 ={

(q1, p1, q2, p2)∈R | p1 − q1 =c, q1 < −c/(1 + kq )
}
,

d+
2 ={

(q1, p1, q2, p2)∈R | p1−q1 =−c, q1 < ckp/(kp − 1)
}
,

d−
2 ={

(q1, p1, q2, p2)∈R | p1 − q1 =−c, q1 > c/(1 + kp)
}
.

(45)

The spherical cap d+
1 , bounded by the a+

1 on n+
1 ,

gives all initial conditions of initial energy h for the
transit orbits starting from the bounding sphere n+

1
and entering R. Similarly, the spherical cap d−

1 in
n−
1 , bounded by a−

1 , determines all initial condi-
tions of initial energy h for transit orbits starting on
the bounding sphere n−

1 and leavingR. The spher-
ical caps d+

2 and d−
2 on n2 have similar dynami-

cal behavior. Note that in the conservative system,
the transit orbits entering R on d+ will leave on
d− in the same 2-sphere. However, those transit
orbits with the same initial conditions in the dissi-
pative system will not leave on the corresponding
2-sphere, but leave on another sphere with lower
energy. Moreover, the spherical caps d+ shrink and
d− expand compared to that of the conservative
system. Since the area of the caps d+ and d− deter-
mines the amount of transit orbits and non-transit
orbits, respectively, the shrinkage of the caps d+
and expansion of the caps d− mean the damping
reduces the probability of transition and increases
the probability of non-transition, respectively.

4. Let b be the intersection of n+ and n− (where
q1 + p1 = 0). Then, b is a 1-sphere of tangency
points. Orbits tangent at this 1-sphere “bounce off,”
i.e., do not enter R locally. The spherical zones
r1 and r2, bounded by a+

i and a−
i , give the initial

conditions for non-transit orbits zone. r+, bounded
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(a) (b) (c)

Fig. 5 (a) The projection onto the (q1, p1)-plane, the saddle pro-
jection, with labels consistent with the text and (b) and (c). (b)
The cross section of the flow in the R region of the energy sur-

face. The north and south poles of bounding sphere ni are labeled
as Ni and Si , respectively. (c) The McGehee representation of
the flow in the region R

by a+
i and bi , are the initial conditions of initial

energy h for non-transit orbits entering R, and r−
i

are the initial conditions of initial energy h for non-
transit orbits leaving R. Note that unlike the shift
of the spherical caps in the dissipative system com-
pared to that of the conservative system, the tan-
gent spheres b1 and b2 do not move when damping
is taken into account. Moreover, in the conserva-
tive system, non-transit orbits enter R on r+ and
then exit on the same energy bounding 2-sphere
through r−, but the non-transit orbits in the dis-
sipative system exit on a different 2-sphere with
different energies determined by the damping and
the initial conditions.

3.3 Transition tube and transition ellipsoid

After examining the flow in the eigenspace, we study
the linearized dynamics in the phase space.

Transition boundary in the conservative system. Once
we obtained the analytical solutions in (33) for equa-
tions (31) in the eigenspace of the conservative system,
we can use the change of variables in (26) to get the
analytical solutions for the equations in the conserva-
tive system written as

q̄1 = q01
s1

eλt − p01
s1

e−λt+ 1

s2
(q02 cosωpt+ p02 sinωpt),

q̄2 = cx − λ2

s1
q01e

λt + λ2 − cx
s1

p01e
−λt

+ ω2
p + cx

s2
(q02 cosωpt + p02 sinωpt),

p̄1 = λ

s1
q01e

λt + λ

s1
p01e

−λt

+ ωp

s2
(p02 cosωpt − q02 sinωpt),

p̄2 = cxλ − λ3

s1
q01e

λt + cxλ − λ3

s1
p01e

−λt

+ cxωp + ω3
p

s2
(p02 cosωpt − q02 sinωpt).

(46)

From the discussion about the conservative system in
Section 3.1, we know that the invariant manifold of the
periodic orbit acts as a separatrix which separates two
distinct types of motion: transit orbits and non-transit
orbits. Thus, we can compute the initial conditions of
the asymptotic orbits to get the transition boundary of a
given energy h. To get such initial conditions, we need
to set the coefficient of the unstable term eλt in q̄1 as
zero, since this term will go to infinity along positive
time which is against the asymptotic properties. Thus,
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we have

q01 = 0. (47)

Denoting the initial conditions in the phase space by
q̄01 , q̄

0
2 , p̄

0
1, and p̄02, they can be connected to the initial

conditions in the eigenspace via (46) by taking t = 0
from which we can straightforwardly write q01 , q

0
2 , p

0
1,

p02, and p̄01 in terms of q̄02 , p̄
0
1, and p̄02. In this case, the

normal form of Hamiltonian function in (32) can be
rewritten by

[
(λ2 − cx )x + y

]2
2h(λ2+ω2

p)
2

s22ωp

+
[
−λx + (λ2 − cx )λy + (λ2 + ω2

p)py
]2

2hωp(cx+ω2
p)

2(λ2+ω2
p)

2

s22

= 1.

(48)

Notice the formula in (48) is a tube. Its projection
onto the position space is a strip bounded by the lines
[1],

q̄2 = (cx − λ2)q̄1 ± λ2 + ω2
p

s2

√
2h

ωp
. (49)

Transition boundary in the dissipative system. After
we get the solution of the dissipative system in the
eigenspace in (44), we can use the change of coordi-
nates in (26) to obtain the solutions of the equations
(21) as,

q̄1 = k1 − k3
s1

eβ1t + k2 − k4
s1

eβ2t + q2
s2

,

q̄2 = k1 − k3
s1

(cx − λ2)eβ1t + k2 − k4
s1

(cx − λ2)eβ2t

+ ω2
p + cx

s2
q2,

p̄1 = k1 + k3
s1

λeβ1t + k2 + k4
s1

λeβ2t + ωp

s2
p2,

p̄2 = k1 + k3
s1

(
cxλ − λ3

)
eβ1t

+ k2 + k4
s1

(
cxλ − λ3

)
eβ2t + cxωp + ω3

p

s2
p2.

(50)

To obtain the initial conditions for the asymptotic orbits
in the dissipative system, the term of eβ1t should van-
ish; otherwise, the trajectory will go to infinity along
positive time. Thus, we can directly set the coefficient
of eβ1t as zero, i.e., k1 − k3 = 0, which results in

q01 = kp p
0
1, (51)

which are the initial conditions of the stable asymp-
totic orbits in the eigenspace of the dissipative system
as discussed before Section 3.2. Denoting the initial
conditions in the phase space by q̄01 , q̄

0
2 , p̄

0
1, and p̄02,

they can be connected to the initial conditions in the
eigenspace via (50) by taking t = 0. Thus, along with
(51), we can straightforwardly write q01 , q

0
2 , p

0
1, and p02

in terms of q̄01 , q̄
0
2 , p̄

0
1, and p̄02. In this case, the normal

form of Hamiltonian function in (32) can be rewritten
by

[
(λ2 − cx )x + y

]2
2h(λ2+ω2

p)
2

s22ωp

+
[
(cx + ω2

p)x − y
]2

h(kp−1)2(λ2+ω2
p)

2

λkps21

+
[
−λx+(λ2−cx )λy+ (1−kp)

(1+kp) (λ
2+ω2

p)py
]2

2hωp(kp−1)2(cx+ω2
p)

2(λ2+ω2
p)

2

s22 (1+kp)2

=1,

(52)

which has the form of an ellipsoid. It can also bewritten

in the form, ap̄2
(
p̄02

)2 + bp̄2 p̄
0
2 + cp̄2 = 0, where ap̄2 ,

bp̄2 , and cp̄2 are given in Appendix 1. The projection
of the ellipsoid onto the configuration space can be
obtained by b2p̄2 − 4ap̄2cp̄2 = 0 which is an ellipse of
the following form [1],

(q̄01 cos θ + q̄02 sin θ)2

a2e
+ (−q̄01 sin θ + q̄02 cos θ)2

b2e
= 1,

(53)

where

ae =

√√√√√√√
2h

(
λ2 + ω2

p

)2 (
cx + ω2

p

)2

ωps22

[(
cx + ω2

p

)2 + 1

] ,

be =

√√√√√√√
h
(
kp − 1

)2 (
λ2 + ω2

p

)2

λkps21

[(
cx + ω2

p

)2 + 1

] ,
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cos θ = 1√(
cx + ω2

p

)2 + 1

,

sin θ =
(
cx + ω2

p

)
√(

cx + ω2
p

)2 + 1

. (54)

Transition tube and transition ellipsoid. We have
obtained the transition boundaries for both the con-
servative and dissipative systems. Their geometries in
the phase space are in the form of a tube and an ellip-
soid given in (48) and (69) which are referred to as the
transition tube and transition ellipsoid, respectively, in
escape dynamics [16]. See the tube and ellipsoid in
Figs. 6 and 7, respectively.

In the figures, the transition tube and transition ellip-
soid serve as the transition boundary in the phase space
giving the initial conditions of a given energy h for
all the trajectories that can transit from the one side of
the saddle point to the other in the conservative and
dissipative systems, respectively. All the transit orbits
must have the initial conditions inside the transition
boundary, while the non-transit orbits have the initial

conditions outside the boundary; surely, the transition
boundary gives the initial conditions for the asymptotic
orbits. To physically show the transition criteria, three
initial conditions (one inside, one outside, and one on
the transition boundary) are selected on the Poincaré
section� for both the conservative and dissipative sys-
tems. Three different types of trajectories (i.e., tran-
sit orbit, non-transit orbit, and asymptotic orbit) are
observed. We can know that their transition conditions
are truly governed by the transition boundary which
demonstrates the rightness of the transition criteria and
transition boundary we obtained.

Notice the transition tube and transition ellipsoid are
divided into two parts by a surface, referred to as the
critical surface. The left part gives the initial conditions
for the transit orbits going to the right, and the right
part gives the initial conditions for the transit orbits
going to the left. The transit orbits can cross the crit-
ical surface, while the non-transit orbits will bounce
back to the region where they come from. The analyt-
ical solution of the critical surface can show that the
conservative system and dissipative system share the
same critical surface. It means the critical surface is an
intrinsic property of the system and will not be affected

Fig. 6 Transition region boundary ∂Th which is a tube (cylinder)
for the linearized conservative system with initial energy h. The
left figure shows tube boundary (the ellipse) separating the tran-
sit and non-transit orbits on the Poincaré section �, where the
dots are the initial conditions for the corresponding trajectories.
The right figure shows the transition tube for a given energy. The
critical surface divides the transition tubes into two parts whose

left part gives the initial conditions for orbits transitioning to the
right, and right part gives the initial conditions for orbits transi-
tioning to the left. Some trajectories are given to show how the
transition tube controls the transition whose initial conditions
are shown as dots on the left Poincaré section with same color.
(Color figure online)
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Fig. 7 Transition ellipsoid for the dissipative system of initial
energy h. The left figure shows the Poincaré section �, where
the dots are the initial conditions for the corresponding trajecto-
ries with the same color in the right figure and the solid ellipse
is the set of initial conditions for saddle-type asymptotic orbits.
For comparison, the dashed ellipse of the tube boundary for the
conservative system with the same energy h is also given. On the
right is the ellipsoid giving the initial conditions for all transit

orbits. The critical surface divides the ellipsoid into two parts.
Each side of the ellipsoid gives the initial conditions of transit
orbits passing through the critical surface to the other side. In this
figure, SA and FA denote the saddle-type and focus-type asymp-
totic orbits, respectively. Notice that due to the energy dissipa-
tion here, the periodic orbit in the conservative system becomes
the initial conditions (ICs) of the focus-type asymptotic orbits.
(Color figure online)

by any dissipation. In fact, the critical surface is a sep-
aratrix of different potential wells. Thus, once a transit
orbit crosses the critical surface, it cannot return.

At the bottom of both Figs. 6 and 7 shown is the flow
on the position space (or configuration space) projected
from the phase space. Notice that all possible motion is
contained within the zero-velocity curve (correspond-
ing to p̄1 = p̄2 = 0), the boundary of motion in the
position space for a given value of energy. The pro-
jection of the transition tube and transition ellipsoid
onto the position space is a strip and an ellipse given
in (49) and (53), respectively. The strip is denoted by
S. The ellipse in tube dynamics is called the ellipse of
transition [1,16]. Outside of the strip and ellipse, no
escape is allowed. Even in the interior area, the escape
is not definitely guaranteed. At each position inside of
the strip and ellipse, there exists a wedge of velocity
dividing the transit and non-transit orbits. The wedge
of velocity gives the “right” directions for the transi-
tion. Orbits with the velocity interior to the wedge are
transit orbits, while orbits with the velocity outside of
the wedge are non-transit orbit. Of course, orbits with
velocity on the boundary are the asymptotic orbits. In
fact, the boundaries of the wedge of velocity at a spe-

cific position are the lower and upper bounds of the
velocity at that point. See A and A′ in Fig. 6, and SA
and SA′ in Fig. 7 for the lower and upper bounds of the
velocity at a specific position in the conservative and
dissipative systems, respectively. We can also observe
that the periodic orbit in the position space is a straight
line which means the periodic orbit in the phase space
is perpendicular to the position space.

From Figs.6 and 7, we observe the transition tube
encompasses the transition ellipsoid and they are tan-
gential to each other at the critical surface. It means the
dissipation in the system decreases the possibility of
the transition. This is an intuitive conclusion. In fact,
the transit orbit in Fig. 6 and the non-transit orbit in
Fig. 7 have the same initial condition. However, the
dissipation makes a transit orbit in the conservative
system become a non-transit orbit in the dissipative
system. It demonstrates the dissipation in the system
decreases the possibility of transition. When the dis-
sipation is considered in the system, the transit orbit
must start from a position not far from the equilibrium
point; otherwise, the evanescent energy of the orbit will
fall below the critical energy that allows the transition
before crossing the critical surface. In this condition,
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the bottleneck around the index-1 saddle is closed so
that the transition is impossible. The farthermost posi-
tion for the transit orbit in the dissipative systems is the
end points of the transition ellipsoid.

Stable global invariant manifold of the equilibrium
point as separatrix. In the discussion about the lin-
earized dynamics around the index-1 saddle, the key
observation is that the initial conditions for the asymp-
totic orbits are on the surface of transition tube and
transition ellipsoid in the conservative and dissipative
systems, respectively. The tube and ellipsoid are con-
stant Hamiltonian energy slices of points of the stable
invariant manifolds of the periodic orbit and the equi-
librium point, respectively; that is, the stable invariant
manifolds can be foliated by the Hamiltonian energy h.
For a given energy h, the stable invariant manifold sep-
arates two distinct types of motion: transit orbits and
non-transit orbits. The transit orbits, passing from one
realm to another, are those inside the invariant mani-
fold. The non-transit orbits, which bounce back to their
realm of origin, are those outside the invariant mani-
fold. The concept of the invariant manifold of a peri-
odic orbit and an equilibrium point will be important
for the computation of transition boundary in the non-
linear system. In the next part, we will describe the
algorithms to compute the invariant manifold as the
transition boundary in the nonlinear system.

4 Algorithms for computing the invariant
manifolds

4.1 Invariant manifold of a periodic orbit

In this part, we aim to introduce the process to com-
pute the invariant manifold of a periodic orbit. It has
two separate parts. The first part concerns the algorithm
for computing a periodic orbit, whereas the second con-
cerns the computation of the stable and unstable man-
ifolds of the periodic orbit.

Periodic orbits. A solution of the dynamical system
(1) is a periodic orbit [50] if there exists a least time
interval T > 0 which satisfies x(t+T ) = x(t) for all t .
Wewill refer to the periodic trajectory as x̄(t). Multiple
methods have been developed to compute the periodic
orbits, such as the method of multiple scales [51,52],
incremental harmonic balancemethod [53,54], and dif-
ferential correction (or shooting method) [23,55,56],

to name but a few. In the following, we will introduce
another efficient BVP approach which can compute the
periodic orbits very accurately. Before discussing this
approach, we rescale the time by introducing the linear
transformation, τ = t/T , so that the period T appears
explicitly in the equations of motion. Thus, the equa-
tions of motion in (1) can be rewritten by

dx

dτ
= T f (x), 0 � τ � 1, (55)

where T is the unknown period. For the periodic orbits,
we have the periodicity condition,

x(0) = x(1). (56)

However, (55) and (56) do not uniquely determine the
periodic solution, since if x(t) is a periodic solution,
so is x(t + tδ). To avoid the arbitrary phase shift tδ , the
following integral phase condition [32,50,57] iswidely
used,∫ T

0

[
x(t) − x∗(t)

]T
f (x(t))dt

=
∫ 1

0

[
x(τ ) − x∗(τ )

]T
f (x(τ ))dτ = 0, (57)

where x∗(t) is a known nearby solution. The BVP is
now formulated and will require numerical methods.
The MATLAB-based software package COCO [32]
was applied to compute the periodic orbits. COCO
is a continuation tool which contains the algorithm
described here as a toolbox, po, which uses the col-
location and pseudo-arc length methods.

Invariant manifold of a periodic orbit. As mentioned
in the introduction, the general way of computing the
global invariantmanifold is to globalize the local invari-
ant manifold of the corresponding linearized system.
Thus, here we can first find the local approximations of
the manifold of the periodic orbit from the eigenvec-
tors of the monodromy matrix and then grow the linear
approximations by integrating the nonlinear equations
of motion (1). The procedure is known as globalization
of the manifolds. Before growing the invariant mani-
fold of the periodic orbit, we need to compute the state
transition matrix �(t) along the periodic orbit which
can be obtained by numerically solving the following
variational equations from time 0 to T ,

�̇(t) = Df (x̄(t))�(t), with �(0) = In . (58)
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Once the monodromy matrix M ≡ �(T ) is obtained,
its eigenvalues (the Floquet multipliers) can be com-
puted numerically. For the two-mode Hamiltonian sys-
tem about the shallow arch in the current study, M is
an infinitesimally symplectic matrix and its four eigen-
values consist of one real pair and one imaginary pair
on the unit circle (see [55]),

λ1 > 1, λ2 = 1
λ1

, λ3 = λ4 = 1. (59)

The eigenvector associated with eigenvalue λ1 is in
the unstable direction, while the eigenvector associated
with eigenvalue λ2 is in the stable direction. Denote
the stable and unstable eigenvectors at the initial con-
dition x0 on the periodic solution by es(x0) and eu(x0),
respectively, normalized to unity. In this setting, we can
obtain the initial guess for the stable and unstable man-
ifolds, denoted by xs(x0) and xu(x0), at x0 along the
periodic orbit written in the following form,

xs(x0) = x0 + εes(x0),

xu(x0) = x0 + εeu(x0),
(60)

where ε is a small parameter to obtain a small dis-
placement from x0 in the appropriate direction. The
magnitude of ε should be small enough so that the lin-
ear estimate can satisfy the accuracy, yet not so small
that the time to obtain the global manifold becomes
large due to the asymptotic behavior of the stable and
unstable manifolds [55].

Once the initial guess for the stable and unstable
manifolds at x0 is obtained, it is straightforward to
globalize the manifold. By numerically integrating the
unstable vector forward in time, using both ε and −ε,
one generates trajectories shadowing the two branches,
Wu+ and Wu−, of the unstable manifold of the peri-
odic orbit. Similarly, by integrating the stable vector
backward, we generate a trajectory shadowing the two
branches of the stable manifold, Ws±. For a trajectory
on themanifold at some other point x̄(t) on the periodic
orbit, one can use the state transitionmatrix to transport
the eigenvectors from x0 to x̄(t),

es(x̄(t))=�(t)es(x0), and eu(x̄(t))=�(t)eu(x0).

(61)

Since the state transition matrix does not preserve the
norm, the resulting vectors must be renormalized.

Globalizing the manifold at N points x̄(t) on the
periodic orbit (where N is large) provides a set of N
trajectories which approximate the global manifold of
energy h. In the case of the stable manifold, one there-
fore obtains the boundary of the transit orbits starting
with energy h, ∂Th .

4.2 Invariant manifold of an equilibrium point

In the previous section, we discussed the approach to
compute a periodic orbit of energy h and its stable and
unstable invariant manifolds in the conservative sys-
tem. The stable invariant manifold along each energy
manifold of energy h is ∂Th , the boundary of the initial
conditions starting at energy h that will soon escape
from one side of the index-1 saddle to the other. Once
this is understood, it is natural to consider what the
global phase space structure governing the transition
will be in the dissipative system. We address that con-
cern by computing the invariant manifold of the equi-
librium point in the dissipative system.

We consider the same general form of a dynamical
system in (1) to define the dissipative system with a
hyperbolic equilibrium point, xe. The Jacobian of the
equilibrium point, Df (xe), has k eigenvalues with neg-
ative real part. The real parts of the k eigenvalues and
the corresponding generalized eigenvectors are written
by λsi < 0 and ui (i = 1, · · · , k), respectively. Thus,
the saddle has a k-dimensional local, invariant stable
manifold, denoted byWs

loc(xe), which is tangent to the
respective invariant stable subspaces, Es , of the lin-
earized system about the saddle, spanned by the stable
eigenvectors ui .

Once the local stable manifold is determined, it can
be globalized to obtain the global k-dimensional stable
manifold Ws(xe) [22]. The direct approach to obtain
the global manifold is to select initial conditions in the
stable subspace a small distance from the equilibrium
point and integrate backward in time, thereby obtaining
orbit segments on the stable manifold. Numerical con-
tinuation by using the resulting orbit as a starting solu-
tion might give the global manifold. However, some
challenges may appear [24], such as large aspect ratios
of the computed manifold surface due to a difference
in the real parts of the eigenvalues, and correspond-
ing stretching of the distance between solutions after a
sufficiently long integration. To solve these problems,
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re-meshing of the manifold surface is needed, which is
another challenge.

Another way of obtaining the stable manifold is
solving a proper two-point BVP [57] which can control
the end points of the trajectories. Before describing the
process, we need to rescale the time by t = T τ which
puts (1) into the same form in (55) where τ varies from
0 to 1. It should be mentioned that, compared to the
period T of a periodic orbit in the conservative system,
T in the dissipative case is a chosen timescale. We can
consider T as either a parameter or a function whose
derivative with respect to τ is zero, i.e., dT/dτ = 0.
Here, we consider it as a parameter. To form a com-
plete BVP, we still need some boundary conditions.
The boundary conditions at τ = 0 can be selected on
an initial hyper-sphere on the stable subspace given by,

x(0) = xe + r0

k∑
i=1

aiui , (62)

where ai are parameters controlling the direction of
the initial condition; r0 is the distance of the initial
conditions from the equilibrium point. The parameter
r0, like ε in the previous section, should be properly
selected, neither too small nor too large.

In the following, we will take the snap-through of a
shallow arch with damping as an example. The equa-
tions for the BVP to compute the invariant manifold of
the index-1 saddle are,

Ẋ = T
pX
M1

,

Ẏ = T
py
M2

,

ṗX = T

(
− ∂V

∂X
− CH pX

)
,

ṗY = T

(
−∂V

∂Y
− CH pY

)
.

(63)

where ∂V/∂X and ∂V/∂Y are given in (16).
In the dissipative system, the index-1 saddle has

become a hyperbolic point with a k = 3-dimensional
stable invariant manifold. The τ = 0 boundary con-
ditions can be selected along an initial 2-sphere with
radius r0 given by,

x(0) = xe + r0 (u1 sin θ sin φ + u2 sin θ cosφ

+ u3 cos θ) , (64)

where θ and φ are the two parameters (spherical coor-
dinates). Notice that, for fixed r0 and for each θ φ, (64)
corresponds to 4 boundary conditions at τ = 0.We still
need one more boundary condition, at τ = 1. We can
have several choices, such as the energy, arc length, or
time of the trajectories. In the current problem, wewant
to find the boundary in the dissipative system of tran-
sition trajectories with an initial Hamiltonian energy
H = h. This is done by assigning the energy to the end
point at τ = 1,

H (X (1),Y (1), pX (1), pY (1)) = h, (65)

After we set up the BVP, we can apply numerical con-
tinuation to obtain the invariant manifold of the system.
Before solving the BVP, we need to prescribe r0 and
h, so we have 4 variables (X , Y , pX , and pY ) and 3
parameters (θ , φ, and T ). On the other hand, we have
5 boundary conditions in (64) and (65). Thus, the BVP
here is a two-parameter continuation. To simplify the
continuation process, we can reduce the system to a
one-parameter continuation by introducing a proper
Poincaré section.

Of the three stable eigenvectors u1, u2, and u3, we
assume the magnitude of the real part of the eigen-
value associated with u1 is the largest. Thus, the u1
direction is the dominant stable direction. If we take
θ = φ = π/2 in (64) and use it as an initial condition
to numerically integrate (63) backward in time until
the trajectory reaches the desired energy h, we reach
the furthest end of the nonlinear transition ellipsoid.
Since this trajectory is approaching the saddle in posi-
tive time along the most stable direction, it is the fastest
stable asymptotic orbit to the saddle. We refer to it as
the fastest trajectory. In the following, we will use it
as a reference trajectory to determine an appropriate
Poincaré section.

Let r denote the position vector of an arbitrary point
on the fastest trajectory in the X -Y -pY subset of phase
space. We can obtain the tangent vector t at that point
along the fastest trajectory,

t = ∂r
∂s

= ∂X

∂s
eX + ∂Y

∂s
eY + ∂pY

∂s
epY = Ẋ

ṡ
eX + Ẏ

ṡ
eY + ṗY

ṡ
epY ,

(66)

where eX , eY , and epY are the corresponding basis vec-
tors along X , Y , and pY . Here, s is the arc length of
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the reference trajectory in X -Y -pY space, which is a
function of τ , defined by,

s(τ ) =
∫ τ

0

√
Ẋ2 + Ẏ 2 + ṗ2Y dτ

′. (67)

For a specific point (X0,Y0, pY0) on the fastest tra-
jectory, we can choose a plane normal to t at that point
as the Poincaré section. The mathematical expression
of the plane is given by,

tX (X (1)−X0)+tY (Y (1)−Y0)+tpY (pY (1)−pY0) = 0,

(68)

where tX , tY , and tpY are the components of the tan-
gent vector t along the X , Y , and pY axes, respec-
tively. In this case, we have one more algebraic equa-
tion as the extra boundary condition. This means
our problem reduces to one-parameter continuation
on the Poincaré section. Fig. 8 gives the illustra-
tion of the process to select the proper Poincaré
section described above. The algorithm of solving
the boundary value problem will be implemented in
COCO [32] again to compute the invariant manifold
of the equilibrium point. In this way, one obtains
the transition boundary, ∂Th , in the dissipative
system.

(a) (b)

(c) (d)

Fig. 8 Illustration of selecting an extra Poincaré section to
reduce the two-parameter continuation to a one-parameter con-
tinuation: a Select the initial condition of the fastest trajectory
on the initial sphere (with small radius r0) in the stable subspace
of the linearized system and numerically integrate the nonlinear
equations until the trajectory reaches the given energy h. b Select
a bunch of points on the fastest trajectory and compute the tan-
gent vector at each point along the fastest trajectory. Each point
has uniform arc length to its two neighboring points; c finally, the
plane normal to the tangent vector at each point can be selected
as the Poincaré section at that point. d After we determine the

Poincaré sections, we can select another initial condition on the
initial sphere and numerically integrate the nonlinear equations
until it reaches the Poincaré sections and denote the intersection
as point A. Of course, we can also use the fastest trajectory. In
general, the energy of point A is lower than the given energy h.
Next, we can fix pY and commit the continuation along Y direc-
tion until the Hamiltonian reaches h so that we can obtain the
point B which is on the transition boundary. Then, we can use
point B as the starting solution and do the continuation with fixed
total energy h by which we can obtain the transition boundary
on the Poincaré section
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5 Numerical results

In this section, we give the geometry of transition
boundary that mediates the nonlinear snap-through
buckling of a shallow arch in both the conservative and
dissipative systems. In the corresponding examples, the
geometrical and material parameters are selected fol-
lowing previous experimental and theoretical studies
[1,35]: b = 12.7 mm d = 0.787 mm, L = 228.6 mm,
γ1 = 0.082 mm, and γ2 = −0.077 mm; the Young’s
modulus and the mass density are E = 153.4 GPa and
ρ = 7567 kg m−3; moreover, the thermal load is cho-
sen to be 184.1 N. For the convenience of discussing
the energy, we use the excess energyE [30] above the
saddle point S1 which is defined byE = E−Ec. The
energy of S1 is Ec, the critical (minimum) energy nec-
essary for transition between the twowells. For positive
excess energy, E > 0, the bottleneck region around
the saddle is open so that the trajectories have a chance
to escape; otherwise, the bottleneck region is closed
and transition is not energetically possible.

5.1 Conservative systems

In this section, we give some examples of the transition
boundary in the conservative system. Analogous to the
linearized dynamics around S1 as discussed in Section
3.1, for initial conditions of a certain energy above the
Ec, the transition between the potential wells in the
conservative system is governed by a cylindrical con-
duit.

Figure 9 shows two transition tubes with initial
excess energy E = 1.0 × 10−4 J and E = 2.0 ×
10−4 J, respectively.The left twoare the transition tubes
in the phase space, and the right two are the correspond-
ing projections onto the configuration space. Outside
the transition tubes, we also plot the energy manifolds
which is the boundary of all possible motions of the
corresponding energy in the phase space. The transi-
tion tubes, i.e., the stable invariant manifolds of peri-
odic orbits about the index-1 saddle point, are cylin-
drical tubes of trajectories asymptotically approaching
the periodic orbit in forward time. The transition tube is
the boundary in phase space separating transition and
non-transition trajectories. All the trajectories of initial
excess energy E transitioning to a different potential
well are inside the tube manifold. The size of the tran-
sition tube compared to that of the energy manifold is a

measure of the probability of transition. Notice that this
ratio is larger for the case of larger excess energy.More-
over, since the energy in the conservative system keeps
constant during evolution of any trajectories, the sym-
plectic cross section of the tube manifold is invariant,
obeyingHamilton’s canonical equations (with no dissi-
pation). Notice that in the linearized system around the
index-1 saddle, the transition tube appears as a straight
cylinder. However, due to the nonlinear terms, the tran-
sition tube in the full system is curved.

To show how the transition tube confines the transi-
tion between potential wells, Figure 10 gives the transi-
tion tube and two trajectories with E = 3.68× 10−4

J, which is coincident with the energy used in [1].
A Poincaré section �1 is selected which is defined

by the X value equal to that of the stable equilibrium
point W1. The intersection of the transition tube with
�1 is a closed curve serving as the transition bound-
ary on the Poincaré section. At the location of W1, two
initial conditions are chosen, one inside and one out-
side of the transition boundary. The trajectory with the
initial condition inside of the transition boundary is a
transit orbit, transitioning from potential well W1 to
potential well W2. The trajectory with the initial con-
dition outside of the transition boundary, however, is a
non-transit orbit, returning to W1 before entering the
realm of potential well W2.

To further validate the current method, Figure 11
shows a comparison of the transition boundary on the
Poincaré section �1 between the current method and a
previously developed bisection method [1]. From the
figure, the results obtained by the two methods agree
well with each other, demonstrating that the two algo-
rithms are consistent.

The bisection method has an advantage over the
BVP method in that it does not depend on informa-
tion regarding the linearized dynamics about the tran-
sition. Instead, it is a “brute-force” approach which
directly searches the boundary on a Poincaré section
and therefore has the disadvantage of taking a larger
computational time for the same level of precision. A
hybrid approach could be possible wherein one firstly
obtains a boundary point along a specific direction on
the Poincaré section using the bisection method. This
point is an initial condition for a trajectory asymptotic
to the periodic orbit and can be used to obtain the peri-
odic orbit itself. Once the periodic orbit is obtained,
one can apply the globalization of the local invariant
manifold of a periodic orbit via the BVP approach.
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Fig. 9 Transition tubes obtained by current algorithm in the con-
servative system. The left two in a and c are the transition tubes
in the phase space with excess energy E = 1.0 × 10−4 J and
E = 2.0×10−4 J, respectively. The right two in b and d are the

corresponding projections onto configuration space. Exterior to
the transition tubes, the energymanifolds are shownwhich bound
the possible motion of all trajectories with that initial energy

5.2 Dissipative systems

In this section, the transition boundary in the dissipa-
tive system for the snap-through buckling of the shal-
low arch is obtained. In the conservative system, the
energy remains constant in time for all motions. How-
ever, in the dissipative system the energy decreases as
trajectories go forward in time. Furthermore, as in the
linearized system, the phase space structure that gov-
erns the transition in the dissipative system is topolog-
ically distinct from that in the conservative system. For
the following numerical results in the dissipative sys-
tem, the damping parameter is taken as CH = 80 s−1.

Figure 12 shows two transition ellipsoids with ini-
tial excess energy E = 1.0 × 10−4 J and E =
1.0×10−4 J, respectively. The corresponding configu-
ration space projections are given on the right. The fig-
ure shows that the transition ellipsoid of larger energy
has a larger size relative to the energy manifold, com-
pared with the smaller energy transition ellipsoid. That
is, the probability for transition increases with initial
excess energy.Due to the presence of nonlinear terms in
the system, the transition ellipsoids appear curved com-
pared to their linearized system counterparts. However,
their topology is the same: a 2-sphere.

In Fig. 12, the periodic orbits with the same excess
energy from the conservative system are also shown.
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Fig. 10 A transition tube in the conservative system obtained
by the boundary value problem approach: The right figure shows
the transition tube in a three-dimensional projection of the four-
dimensional phase space; the lower left shows the configuration
space projection; the upper left shows the transition boundary,
a closed curve, on the Poincaré section �1 which separates the

initial conditions with a given fixed energy for the transit and
non-transit trajectories. A transit orbit and a non-transit trajec-
tory starting with initial conditions labeled by T and NT are
shown, which are inside and outside of the transition boundary
on the Poincaré section �1, respectively

Fig. 11 Comparison of the transition boundary on Poincaré sec-
tion �1 in the conservative system between the results obtained
by the current algorithm and those obtained by the bisection
method [1]. The excess energy E is selected to be 3.68×10−4

J. The current result calculated via the boundary value problem
approach is shown as dots, and the result calculated by the bisec-
tion method [1] is shown as a solid curve

Notice that the periodic orbits are exactly on the bound-
ary of the transition ellipsoids. In fact, the points on the
periodic orbits are the initial conditions of the focus-
type asymptotic orbits. Each periodic orbit divides the
corresponding transition ellipsoid into two parts. The
left part of the transition ellipsoid bounds the initial
conditions for transit orbits moving from left well to
the right well, while the right part bounds the initial
conditions for transit orbits moving from right to left.

To illustrate in further detail how the transition ellip-
soid bounds the initial conditions leading to transition,
we select an excess energy E = 3.68 × 10−4 and
compute the transition ellipsoid shown in Figure 13.
We select two initial conditions on the Poincaré sec-
tion �1, both with a configuration space value equal to
the equilibrium point W1, but with nonzero velocity.
One initial condition is inside and the other outside of
the transition ellipsoid boundary. Integrating the ini-
tial conditions forward in time, we obtain two trajec-
tories. From the figure, we find that trajectory T with
the initial condition inside of the transition boundary
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(a) (b)

(c) (d)

Fig. 12 Transition ellipsoids in the dissipative system obtained
by the boundary value problem approach: a and c show the
three-dimensional transition ellipsoidswith excess energyE =
1.0×10−4 J andE = 2.0×10−4 J, respectively; d and d show

the corresponding configuration space projections. An animation
for the transition ellipsoid is at https://www.youtube.com/watch?
v=qzKQWe__uv4

escapes from the potential well W1 to the other poten-
tial well W2, while trajectory NT with the initial con-
dition outside of the transition boundary bounces back
to the region of origin. The same case study was con-
ducted in [1] via the bisection method. The comparison
of the transition boundary on the Poincaré section �1

obtained by the current study and [1] is given in Fig-
ure 14. Good agreement between the two methods is
observed.

6 Conclusion

In this paper, we apply the concept of invariant mani-
folds to identify the boundaries of transition orbits in
a two-degree-of-freedom nonlinear system with and
without energy dissipation. The example system con-
sidered is the snap-through buckling of a shallow arch,
where energy dissipation is necessary to model the
behavior of the real system [35]. The essence of the
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Fig. 13 A transition ellipsoid in the dissipative system obtained
by the boundary value problem approach: The right figure shows
the transition ellipsoid in a three-dimensional projection of the
four-dimensional phase space; the lower left shows the configu-
ration space projection; the upper left shows the transition bound-
ary, a closed curve, on the Poincaré section �1 which separates

the initial conditions with a given fixed energy for the transit and
non-transit trajectories.A transit orbit and a non-transit trajectory
starting with initial conditions labeled by NT and T are shown,
which are inside and outside of the transition boundary on the
Poincaré section �1, respectively

Fig. 14 Comparison of the transition boundary on the Poincaré
section in the dissipative system �1 between the current algo-
rithm and the bisectionmethod [1]. The excess energy is selected
as E = 3.68× 10−4 J, and the coefficient of the linear viscous
damping is taken as CH = 80 s−1. The results obtained by cur-
rent algorithm and the bisection method [1] are shown by dots
and solid curve, respectively

snap-through buckling is the escape or transition from
one potential well to another. The phase space struc-
tures that govern the transition in the conservative
and dissipative systems are the stable invariant man-
ifold of a periodic orbit and of an equilibrium point,
respectively, of a prescribed energy. The global stable
invariant manifolds are computed numerically by solv-
ing proper boundary value problems which are imple-
mented in the continuation numerical package COCO
[32].

In the conservative system, the computational pro-
cess providing the invariant manifold has two steps,
first the computation of the periodic orbit by solv-
ing a proper boundary value problem and second, the
globalization of the manifold. In the dissipative sys-
tem, we compute the invariant manifold of the index-1
saddle by another set of boundary value problem: We
first compute the stable subspace of the linearized sys-
tem and select a hyper-sphere with small radius in this
subspace. The boundary conditions are selected as the
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points on the small sphere near the equilibrium point
and the prescribed energy at the other end. The bound-
ary value problem setup for the dissipative system is
a two-parameter continuation. To reduce the difficulty
of conducting this continuation, a Poincaré surface-of-
section is introduced so that the problem becomes a
one-parameter continuation.

By using these approaches, one obtains the transi-
tion tube and transition ellipsoid serving as the transi-
tion boundary for the conservative and dissipative sys-
tems, respectively, which are topologically the same
as those in the linearized dynamics. Trajectories with
initial conditions inside the transition boundary will
snap-through, while trajectories with initial conditions
outside the transition boundary will not. As a demon-
stration for the accuracy and efficiency of the current
algorithms, we compared the current results with those
obtained by a bisection method used in [1]. There is
good agreement between each method, but the bound-
ary value problem approach is more systematic.

In [16], the linearized dynamics underlying escape
and transition in several widely known physical sys-
tems in the presence of dissipative and/or gyroscopic
forces was summarized. The current study extends the
linearized dynamics to the nonlinear case presenting
the boundary value problem approach to compute the
transition boundary when dissipation is considered.

Given the generality of this method, and its straight-
forward extensions to three and higher degree of free-
dom systems, we have a unified framework to identify
the dynamical mechanisms of transition in the pres-
ence of dissipation. While we only considered two-
degree-of-freedom systems, in future work, higher-
dimensional systems will be considered.

Acknowledgements The authors would like to thank Mingwu
Li for the discussion on COCO and Hinke M. Osinga for stimu-
lating discussion during the nascent stage of this work. We also
thank Harry Dankowicz and Jan Sieber for hosting “Advanced
Summer School on Continuation Methods for Nonlinear Prob-
lems” at UIUC in 2018 from which the authors got to know
COCO.

Funding This work was supported in part by the National Sci-
ence Foundation under awards 1537349 and 1821145.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Appendices

Quadratic equation for the transition ellipsoid

The formof the transition ellipsoid in (52) thatmediates
the transition in the dissipative system for the snap-
through buckling of a shallow arch can be rewritten by
the following form:

ap̄2
(
p̄02

)2 + bp̄2 p̄
0
2 + cp̄2 = 0, (69)

where ap̄2 , bp̄2 , and cp̄2 are given by

ap̄2 = s22
2ωp(cx + ω2

p)
2
,

bp̄2 = λs22 (1 + kp)(cx − λ2)[q̄02 − q̄01 (cx + ω2
p)]

ωp(kp − 1)(cx + ω2
p)

2(λ2 + ω2
p)

,

cp̄2 = cp − λ2s22 (1 + kp)2(cx − cy)[q̄02 − q̄01 (cx + ω2
p)]2

2ωp(kp − 1)2(cx + ω2
p)

2(λ2 + ω2
p)

,

cp =
⎛
⎝ 4∑
i=1

c(i)p

⎞
⎠ /

[
2ωp

(
kp − 1

)2 (
λ2 + ω2

p

)2] − h,

c(1)p = 2kps
2
1λωp

[
q̄2 − q̄1

(
cx + ω2

p

)]2
,

c(2)p = 8kps
2
2λ2ω2

pq̄1 (cx q̄1 − q̄2) ,

c(3)p = s22λ2
(
1 + kp

)2 [
(cx q̄1 − q̄2)

2 + q̄21ω4
p

]
,

c(4)p = s22ω2
p
(
kp − 1

)2 [
(cx q̄1 − q̄2))

2 + q̄21λ4
]
.
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