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The problem of phase space transport, which is of interest from both the theoretical and
practical point of view, has been investigated extensively using geometric and probabilistic
methods. Two important tools to study this problem that have emerged in recent years are
finite-time Lyapunov exponents (FTLE) and the Perron–Frobenius operator. The FTLE mea-
sures the averaged local stretching around reference trajectories. Regions with high
stretching are used to identify phase space transport barriers. One probabilistic method
is to consider the spectrum of the Perron–Frobenius operator of the flow to identify
almost-invariant densities. These almost-invariant densities are used to identify almost
invariant sets. In this paper, a set-oriented definition of the FTLE is proposed which is appli-
cable to phase space sets of finite size and reduces to the usual definition of FTLE in the
limit of infinitesimal phase space elements. This definition offers a straightforward connec-
tion between the evolution of probability densities and finite-time stretching experienced
by phase space curves. This definition also addresses some concerns with the standard
computation of the FTLE. For the case of autonomous and periodic vector fields we provide
a simplified method to calculate the set-oriented FTLE using the Perron–Frobenius opera-
tor. Based on the new definition of the FTLE we propose a simple definition of finite-time
coherent sets applicable to vector fields of general time-dependence, which are the ana-
logues of almost-invariant sets in autonomous and time-periodic vector fields. The coher-
ent sets we identify will necessarily be separated from one another by ridges of high FTLE,
providing a link between the framework of coherent sets and that of codimension one
Lagrangian coherent structures. Our identification of coherent sets is applied to three
examples.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The problem of phase space transport has important applications in mixing and separation problems in fluid flows that
vary in scale from the micro to the geophysical scale, from interplanetary transport to instability of mechanical systems, to
name a few. A variety of dynamical systems methods have been studied over the past three decades to explain transport
mechanisms, to detect barriers to transport, and to quantify transport rates [1–15]. These methods fall into two main cate-
gories, the geometric and the probabilistic. Under the umbrella of geometric methods are the techniques of invariant man-
ifolds (of fixed points or larger invariant sets), lobe dynamics and finite-strain maps, finite-time Lyapunov exponents (FTLE)
. All rights reserved.
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and Lagrangian coherent structures (LCS). The method of finite-strain, FTLE and LCS has proven to be particularly useful in
studying transport in time-dependent systems and has found a variety of applications [16–27]. The probabilistic approach
studies the transport of densities and measures, and gives rise to notions of almost-invariant sets (AISs) and coherent sets.
These methods have been successfully applied in the study of various geophysical flow problems [13] and mixing in micro-
channels [28–30].

The development of the above two methods has occurred almost simultaneously in the last decade or so. The method of
LCS studies stretching and contraction around reference trajectories and identifies transport barriers. The LCS method is
therefore a local method; it provides local transport information from which one attempts to infer the global transport prop-
erties of the system. The probabilistic method, on the other hand, ignores the local transport structures, but using the trans-
fer operator divides the phase space into two maximally invariant sets, i.e. ‘minimally leaky sets’.

More recently other measures to identify geometrical features and Lagrangian coherence in fluid flows have been ad-
vanced such as in [31,32]. The main idea in [32] is to use the increase in arc length of material lines as a measure of defor-
mation of a set. In [31] the authors proposed a method to distinguish between the linearized stretching and the folding of
material lines by using tools developed in the area of glassy solids. In this approach stretching (so called affine deformations)
are separated from folding (so called non-affine deformations) of material lines by using the observation that stretching
dominates on small time scales and folding on longer time scales. The ideas put forward in [31,32] utilize information from
deformation of material lines and thus have a geometric flavor to them.

A comparison of the results of geometric and probabilistic approaches has been given in Dellnitz et al. [9] and Froy-
land et al. [13] for some time-independent and time-periodic vector fields in which it was shown that the LCS method
does not necessarily yield optimal invariant sets. While comparison of results from different approaches in specific cases
is possible the relation-ship between the geometric and probabilistic methods is not yet clearly understood. One of the
reasons this has been difficult is that geometric methods depend on stretching of material lines (of zero Lebesgue mea-
sure) while the probabilistic method relies on identifying minimally leaky sets of positive measure. One way to address
this issue is to formulate an approach that measures deformations of sets of positive measure. Such a set oriented def-
inition of deformation of sets will be a step towards understanding the relationship between the probabilistic and geo-
metric approaches.

In this paper we (1) propose a set-oriented definition of FTLE that offers a straightforward connection between the evo-
lution of probability densities and finite-time stretching experienced by phase space curves, (2) propose a simplified method
to calculate this quantity when the vector field is periodic using the Perron-Frobenius operator which avoids long-time inte-
grations and (3) propose a simple definition of finite-time coherent sets for vector fields of general time dependence. We
illustrate the proposed definitions with three examples, including geophysical flows defined from data.

We show that the standard FTLE of a trajectory is a special case of the set oriented FTLE of the trajectory of a local set
when the measure of the set is small. We further highlight that while standard FTLE computations can identify Lagrangian
coherent structures these transport barriers do not describe transport due to nonlinear stretching and folding of material
lines that occur on long time scales. The set-oriented FTLE definition we put forward in this paper measures more than the
local measure of stretching around trajectories and contains information on this nonlinear deformation. An important
advantage of a set-oriented FTLE is that one can assign an FTLE value to a set of any size while the standard FTLE is in
theory assigned to infinitesimal sets. Using this idea that one could assign an FTLE value to a large set, we propose a heu-
ristic definition of coherent sets in flows. Here we point out that while in time-independent systems, almost-invariant sets
have been defined precisely and methods to identify such sets are well established, the same is not true of time dependent
systems. This is more so when one considers dynamical systems defined by data that is coarse both spatially and tempo-
rally, such as in geophysical fluid flows. Our heuristic definition of coherent sets fills this gap and can identify an approx-
imate hierarchy of sets of specified Lebesgue measure with various degrees of coherence. This heuristic method does not
necessarily optimally partition the domain into two large non-mixing sets but merely identifies subsets that remain coher-
ent for finite times. This is especially useful for dynamical systems defined by numerical or experimental data, as we show
using the example of atmospheric flow in Section 6, where it is not obvious that there should exist only two optimally
non-mixing sets.

The paper is organized as follows. In Section 2 we review the theory of AISs, FTLE and LCS. In Section 3 we discuss some
limitations of the methods of FTLE-LCSs and AISs when applied to time dependent systems. In Section 4 we propose a new
set oriented definition of the FTLE and coherent sets and provide the details of the computations in Section 5. In Section 6
we use three examples to illustrate our definitions and methods. In the case of autonomous vector fields we also compare
our results with those obtained by the classic FTLE method and the method of AIS. We do this to verify that our results on
weakly mixing sets do not depart qualitatively from those obtained by the method of AIS in the case of time independent
systems.
2. Review of almost-invariant sets and Lagrangian coherent structures

We review the concepts of almost invariant sets, FTLE and LCS in this section. This review is intended to provide a back-
ground and set the context for our reformulation of the FTLE and its probabilistic interpretation. For the details on these
methods the reader is referred to [4–6,8,9,11,15].
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2.1. Almost-invariant sets

Let l denote the Lebesgue measure on M � Rn and /ðxÞtt0
: M � R� R! M be a flow map on M from time t0 to t. Let B be a

measurable set and f 2 L1 be a probability density function, L1 being the space of Lebesgue integrable functions. The unique
operator Pt

t0
: L1

# L1 defined by
Z
B
Pt

t0
fdl ¼

Z
ð/t

t0
Þ�1ðBÞ

fdl ð1Þ
is called the Perron–Frobenius operator for the flow map /t
t0

, [33]. Eq. (1), which holds for all measurable sets, follows from
the Radon–Nykodym theorem.

In practice it is usually necessary to numerically approximate the operator Pt
t0

. This is done by discretizing the domain, M,
into a finite number of sets, say B1; B2; . . . ;Bnf g which is essentially a grid of boxes. A projection p : L1

# span X B1 ; . . . ;XBn

� �
defined by pf ¼

Pn
i¼1ciX Bi

, where X Bi
is the characteristic function of the set Bi and ci ¼

R
Bi

fdl

lðBiÞ
gives a finite dimensional

approximation of f. Since f is a probability density function, ci ¼ 1
lðBiÞ

. Similarly, Pt
t0

f is projected on span X B1 ; . . . ;X Bn

� �
.

The operator Pt
t0

: pf # pPt
t0

f is a linear operator between finite dimensional vector spaces. Further taking the box measures

lðBiÞ ¼ lðBjÞ for all i; j 2 f1; . . . ;ng; Pt
t0

becomes a stochastic transition matrix. The entries of the matrix P can be determined
by a Monte-Carlo simulation [8]. Each box in the domain contains a fixed number of points (initial conditions) which are
integrated from a time t0 to t. The final position of the points gives the matrix P as,
ðPt
t0
Þij ¼

lðBi \ ð/t
t0
Þ�1ðBjÞÞ

lðBjÞ
: ð2Þ
A time-reversible operator Pr , is useful at this point [34], defined as,
ðPt
t0
Þr ¼

ðPt
t0
Þ þ ðPt

t0
Þ

2
ð3Þ
where P is the time reversed analogue of P. Its elements are given by
ðPt
t0
Þij ¼

w1jðPt
t0
Þji

w1i
ð4Þ
where w1k is the kth component of the first left eigenvector, w1, of Pt
t0

. For a volume preserving flow map in which the do-

main is uniformly discretized, in our case into equal sized boxes, Pt
t0
¼ ðPt

t0
Þ�, the transpose of Pt

t0
. The Markov operator P has

the semigroup property of Pt
t0
¼ Pt

sP
s
t0

, where s 2 ðt0; tÞ. In Section 5 this property is used to simplify the computations of the
FTLE for periodic systems.

A probability density function f is invariant under the flow map if and only if f is a fixed point of P, i.e., f ¼ Pf [33]. The
Radon–Nikodym theorem guarantees the existence of a measure lf ¼

R
fdl that is absolutely continuous with respect to

l. The measure lf associated with the invariant density is called the invariant measure of the flow map [15]. We make
the additional observation that from (1), it follows that if f > 0, then Pf > 0 almost everywhere. A set B 2 B is considered
almost-invariant over the interval ½t0; t� if,
qlf
ðB; t0; tÞ ¼

lf ðB \ ð/
t
t0
Þ�1ðBÞÞ

lf ðBÞ
� 1: ð5Þ
In practice one seeks to maximize the following discretized version of qlf
over all possible sets B ¼ [iBi,
qlf
ðBÞ ¼

P
i;jw1jðPt

t0
ÞjiP

jw1j
: ð6Þ
One can in theory construct an optimization problem to maximize the value of qlf
over all possible combinations of sets

B 2 B. But this problem is combinatorially hard to solve even for simple flow maps. Therefore heuristic methods advanced in
[8,11] are adopted to identify maximally AISs.

It was shown in [8,35,11] that the second right eigenvector, v2 of Pr corresponding to k2, the second eigenvalue, optimizes
value of qlf

, the invariance being higher if k2 is closer to 1. The domain is divided into two almost invariant sets, Bþ and B�

according to the rule
Bþ ¼
[

i:v2
i
>0

Bi and B� ¼
[

i:v2
i
<0

Bi: ð7Þ
The matrix Pr is self-adjoint and so the left and right eigenvectors u and v form an orthonormal basis. The first eigenvector v1,
associated with the eigenvalue 1, is the stationary distribution and is positive. Since v2 ? v1 we can infer that v2 has both
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positive and negative parts. From the definition of a Markov operator, Prðv2Þþ > 0 and Prðv2Þ� < 0, where ðv2Þþ and ðv2Þ� are
the positive and negative parts of v2 such that v2 = ðv2Þþ þ ðv2Þ�. So the sets on which the positive and negative parts of the
second eigenvector v2 are supported are AISs and partition the domain M into two parts of equal measure. It should be noted
that since Pr is self-adjoint in our examples of volume preserving flows in Sections 6.1 and 6.2, the matrix of left eigenvectors
U is the adjoint of the matrix of the right eigenvectors V. Hence the heuristic analogous to (7) could be used with the right
eigenvector, v2, instead of the left eigenvector, u2.

2.2. FTLE and LCS

Let the differential equations corresponding to the flow map defined by /ðxÞtt0
: M � R� R! M be the equations

_x ¼ Fðx; tÞ. Thus the linearized variational equation is
d _xðtÞ ¼ DF
Dx

dxðtÞ; ð8Þ
where dxðtÞ is a perturbation or more accurately an element in TxM, the tangent space of M at xðtÞ and DF
Dx is evaluated along

the trajectory.

Definition 2.1. The maximum Lyapunov exponent is defined as, [36]
rðxÞ ¼ lim sup
t!1

1
t

log
dxðtÞk k
dxðt0Þk k : ð9Þ
Thus, the Lyapunov exponent measures the maximum time averaged stretching of line elements in a small neighborhood
along a trajectory. Since many time-dependent systems of interest are either defined for only finite times (such as by numer-
ical or experimental data) and also possess interesting phase space structures on finite time scales, a finite time version of
the Lyapunov exponent that is based on the finite time stretching of line elements is often employed to study phase space
transport.

Consider a reference trajectory passing through the point xðt0Þ and a perturbed trajectory passing through the point
xðt0Þ þ dxðt0Þ at time t0. The flow map /t

t0
maps these points to /t

t0
ðxðt0ÞÞ and /t

t0
ðxðt0Þ þ dxðt0ÞÞ at time t and the perturbation

grows to dxðtÞ. Expanding /t
t0
ðxðt0Þ þ dxðt0ÞÞ in a Taylor series about the point xðt0Þ we get,
dxðtÞ ¼ /t
t0
ðxðt0ÞÞ � /t

t0
ðxðt0Þ þ dxðt0ÞÞ ¼

d/t
t0

dx
dxðt0Þ þ Oð dxðt0Þk k2Þ: ð10Þ
The norm or magnitude of dxðtÞ can be found using the standard inner product on Rn.
dxðtÞk k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d/t

t0

dx
dxðt0Þ;

d/t
t0

dx
dxðt0Þ

* +vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxðt0Þ;

d/t
t0

dx

 !�
d/t

t0

dx
dxðt0Þ

* +vuut ; ð11Þ
where � denotes the transpose and the gradient
d/t

t0
dx

� �
is evaluated at xðt0Þ. The maximum growth of a perturbation is there-

fore given by the maximum principal stretch, i.e., by the maximum eigenvalue of C.
max dxðtÞk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðCðxðt0Þ; t0; tÞÞ

p
dxðt0Þk k; ð12Þ
where Cðxðt0Þ; t0; tÞ ¼
d/t

t0
dx

� ��
d/t

t0
dx

� �
is the Cauchy–Green tensor. The growth in the perturbation depends on the initial point

x, initial time t0 and the evolution or integration time T ¼ t � t0.

Definition 2.2. The maximum FTLE is defined as, [4,5],
rðxðt0Þ; t0; tÞ ¼
1

jt � t0j
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðCðxðt0Þ; t0; tÞÞ

p� �
: ð13Þ
The leading FTLE gives the time averaged rate of linearized stretching in a neighborhood around a reference trajectory. It
is intuitively clear that regions of the phase space with locally high values of FTLE will undergo high stretching. The sets with
high FTLE act as repelling barriers in the flow map. This intuitive idea of barriers is formalized by the concept of Lagrangian
coherent structures (LCS) due to Haller and Yuan [37,38] and Lekien, Shadden and Marsden [4,5].
Definition 2.3. LCS are codimension one ridges in the scalar FTLE field rðx; t0; tÞ.

Ridges can be defined precisely by appealing to differential geometric quantities [39,4,5,40]. Another alternative defini-
tion of LCS, due to Haller [7], defines LCS more restrictively as hyperbolic material surfaces that extremize finite time normal
repulsion or attraction. This eliminates spurious LCS such as those due to shear stretching.
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3. Limitations of the methods of FTLE-LCSs and AISs in time-dependent vector fields

Limitations of LCS. The concepts of FTLE and LCS reviewed previously have been used fruitfully in many areas as has been
pointed out earlier. However the standard computational implementation of FTLE, using finite differences, [22,4], suffers
from some drawbacks, stemming from the integration time T and the linearization around reference trajectories. In (10),
it is assumed that the second (and higher) order terms are negligible. However the magnitude of the higher order terms de-
pends on the evolution time T ¼ t � t0. If the evolution time T is too high then the higher order terms may be comparable to
the first order terms in (10). If the evolution time T is too low, then one cannot detect any interesting structure in the FTLE
field. While there is some interesting work on choosing T for finite dispersion calculations in [41], often T is selected in a
subjective fashion without checking the validity of (10). In a long integration period, the FTLE may underestimate the defor-
mation of some material lines. We illustrate the problem with long time integration with the example of the double gyre
flow, a prototype in the LCS literature, [4,42]. The double gyre velocity field is defined by the stream function
wðx; y; tÞ ¼ A sinðpf ðx; tÞÞ sinðpyÞ, with f ðx; tÞ ¼ �x2 sin xt þ xð1� 2� sin xtÞ, where we use the parameters A ¼ 0:25;x ¼ 2p
and � ¼ 0:25. The time period of the vector field is s ¼ 1. The FTLE field for the double gyre flow for these parameters is
shown in Fig. 2.

Now consider (10) with the second-order terms explicitly written,
Fig. 1.
the frac
dxðt0 þ tÞ ¼ /t
t0
ðxÞ � /t

t0
ðxþ dxÞ ¼

d/t
t0

dx
dxðt0Þ þ

1
2

dxðt0Þ�
d2/t

t0

dx2 dxðt0Þ þ Oð dxðt0Þk k3Þ: ð14Þ
In this equation it can be shown that the second and first order terms are comparable in magnitude. The max-norm for

matrices is used for this comparison. Fig. 3 shows the plot of kmax
d/t

t0
dx

� �
kdxk and 1

2 kmax
d2/t

t0
dx2

� �
kdxk2. In the region around

the ridges, the magnitude of the second-order terms is more than half that of the first-order terms in (14). This is true for
a smaller evolution time as well, such as T ¼ 5. For smaller integration time such as T ¼ 1 the ridges are not prominent en-
ough. The ridges in the FTLE field for the double gyre are generated by moving instantaneous stagnations points (ISPs). Mate-
rial line elements close to the ISPs stretch in a shorter time as compared to material line elements farther away. Therefore
Fig. 2. FTLE field for the double gyre system for T ¼ t � t0 ¼ 10.

Box-discretization method to calculate P. Box Bj at the final time t is mapped (backwards) to /�1ðBjÞ at the initial time t0. The value of the entry Pij is
tion of box Bi that is mapped into box Bj by /. Note that

Pn
j¼1Pij ¼ 1.



Fig. 3. (a) Comparison of first- and second-order terms in Eq. (14) for T ¼ t � t0 ¼ 10.
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identifying interesting structures such as ridges in the FTLE field requires a long period of integration during which the non-
linear deformation of line elements close to the ISPs occurs.

The problem of the high magnitude of second order terms is not merely due to the coarseness of the grid. It can be seen
that stretching of material lines in the double gyre is due to moving instantaneous saddle points on the lines y ¼ 0 and y ¼ 1.
So even if one were to take a finer grid of initial conditions, once two points begin to separate exponentially around the sad-
dle point the material line joining them also stretches to a length that cannot be accounted by the linear approximation. Thus
the linearized approximation can be erroneous for any discretization of initial conditions.

An alternative, albeit older, method to calculate Lyapunov exponents exists, which has not been widely used to identify
Lagrangian coherent structures. The details of this method can be found in the paper by Swinney et al. [43] and have been
applied for geophysical flows in [16,17]. In this method, the linearized variational equations, (8), are used to calculate the
time rate of expansion of vectors in the tangent space, (dx 2 TxM). As the tangent vectors grow in magnitude, they are renor-
malized and the integration of the linearized equations is continued. The averaged rate of expansion of the tangent vectors
over the time of integration gives the Lyapunov exponent. In principle this method is the same as the previous one. This is

because dF
dx ¼ d

dx
d/
dt

� �
¼ d

dt
d/
dx

� �
, assuming equality of mixed partial derivatives of the flow map /. Thus the time averaged log-

arithm of the maximum norm of the tangent map d
dx gives the maximum Lyapunov exponent. The variational equations can

be integrated with a high degree of accuracy for analytically defined dynamical systems. But in the case of equation free sys-
tems defined by numerical data, the calculation of the Jacobian using coarse data leads to the same problem of large second
order terms. Moreover, when calculating the Jacobian from numerical data it is also possible to underestimate the FTLE. This
is because when material lines fold excessively as shown in Fig. 4, finite differencing underestimates the terms in the
Jacobian.

While the errors in accurately calculating the FTLE can be rectified at least for systems where the variational equations
can be calculated as accurately as desired, there emerges another subtle point from the example of the double gyre. When
one is interested in the finite time global transport and transport barriers, nonlinear stretching and folding of material lines
play an important role, see for example [31]. Even an accurately calculated FTLE does not quantify this simply because the
Lyapunov exponents are defined for the linearized variational equations. This is an inherent feature to the double gyre as
well as other time dependent systems and is not due to the particular computational method or coarsely discretized initial
Fig. 4. Even though the material line joining ðx� Dx; yÞ and ðxþ Dx; yÞ has stretched considerably under the flow map, the ratio
/t

t0
ðxþDx;yÞ�/t

t0
ðxþDx;yÞ

2Dx is less than
1.
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conditions. Put simply, the FTLE/LCS method does not address the importance of transport on finite time-scales due to the
higher order terms in (10). Our aim in the subsequent sections is to define an FTLE-like quantity that is based on the defor-
mations of sets instead of the linearized stretching of line elements. Such a quantity will measure the nonlinear deformation
of a set.

Another limitation of the method of LCS is that it often identifies too much structure in the flow map. In complex flows
like the atmosphere almost every trajectory can have high localized expansion around it. The resulting FTLE field has a net-
work of sharp ridges with small length scale that exist for short periods of time. Such structures may not be of interest in the
study of large scale transport. There is no systematic method of obtaining large scale transport barriers from the small scale
structures. A set-oriented definition of the FTLE can identify the deformation of any connected set. As we show in Section 6
our set oriented definition of the FTLE enables the computation of the FTLE for large sets.

Limitations of AISs. The division of the phase space into two AISs using the Perron–Frobenius operator, P, has a physical
meaning in terms of mixing; the two AISs identified by the positive and negative portions of the second eigenvector of P do
not mix significantly with each other. But this method of identifying AISs does not discriminate between deformation of sets
and translation of sets in time-dependent systems. The problem is illustrated in Fig. 5. Sets B1 and B2, advected by the flow
map /t

t0
, do not distort and mix with each other or the rest of the domain. However, there is no ‘overlap’ between the regions

fB1;B2g and their images f/t
t0
ðB1Þ;/t

t0
ðB2Þg, because the flow map ‘translates’ them. Sets B1 and B2 are definitely not invariant

or almost-invariant since they do not overlap with /t
t0
ðB1Þ or /t

t0
ðB2Þ, respectively. The sets B1 and B2 cannot be identified as

almost invariant by the second eigenvalue–eigenvector of P. Sets B3 and B4 clearly have distorted and mixed partially with
each other and the rest of the domain. The second eigenvector of P does not differentiate between the two cases, even though
B1 and B2 can be intuitively understood to be coherent, while B3 and B4 are not.

It becomes even more difficult to apply the definition of AISs to vector fields defined by numerical or experimental data in
which the domain is ‘leaky’. Particles that exit the domain of the data are either lost or have to be tracked using a combi-
nation of interpolations or very coarse data. For a leaky domain the first eigenvalue of P is not 1 and the criterion of the sec-
ond eigenvalue being close to 1 can become problematic. Lastly, the method of AIS does not directly deal with the
mechanisms of transport, such as the stable and unstable manifolds of fixed points and the ridges in the FTLE field and
the associated lobe dynamics.

One possible extension of the concept of AISs to coherent sets in time-dependent systems has been done [12,13]. A set B
was defined to be coherent if it almost mapped to /t

t0
ðBÞ under a small noise. The phase space is divided into two optimally

coherent sets in a heuristic manner out of all the possible combinations of the subsets. However the method given in [13],
partitions the domain into two large coherent sets of similar size. It was noted in [13] that from those sets that stretch and
become very thin, particles can be ejected easily with a small amount of diffusion. We make explicit use of this idea in our
definition of coherent sets. We provide a method which can identify multiple disconnected coherent sets in a domain. We do
this by first providing an alternative set oriented definition of the FTLE.

4. Set-oriented definition for FTLE and coherent sets

We formulate a new definition of the FTLE that does not use the linearized equations of the flow map, or the stretching of
individual line elements. To illustrate the concept we assume the flow map is over R2 with ðx1; x2Þ 2 R2. The method of
Fig. 5. None of the sets B1;B2;B3 or B4 are almost-invariant.



Fig. 6. Deformation of a disk under the flow map.
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computing FTLE using the eigenvalue decomposition (SVD) of the Cauchy–Green tensor essentially computes the deforma-
tion of a neighborhood under the action of the flow map /t

t0
as shown in Fig. 6. The FTLE for the reference trajectory in this

case is r ¼ 1
jTj log a1

a

	 

where T ¼ t � t0 is the evolution time of the trajectory. This is a measure of the deformation of a circle

of radius a into an ellipse with major and minor axes a1 and a2, respectively.
The set B is tracked by the evolution of a vector X ¼ ½X1;X2� defined by a probability density function f ðx1; x2Þ which is

initially a uniform probability density function supported on B given by, f ¼ 1
lðBÞXB, where XB is the characteristic function

of B. The covariance matrix of f is Iij ¼ E½ðXi � XiÞðXj � XjÞ�, with i ¼ 1;2 and j ¼ 1;2 where ½X1;X2� is the mean value of the
random vector X and E½�� denotes the expectation with E½X� ¼ ½

R
x1f ðx1; x2Þdl;

R
x2f ðx1; x2Þdl�. Under the action of the flow

map /t
t0
; f is mapped to Pt

t0
f where Pt

t0
is the associated Perron–Frobenius operator.

Definition 4.1. Let Iðf Þ be the covariance of f and IðPf Þ the covariance of Pf and let kmaxðIÞ denote the maximum eigenvalue
of I. Then the FTLE of B denoted by rIðB; t0; tÞ is defined as,
rIðB; t0; tÞ ¼
1

jt � t0j
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðIðPf ÞÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðIðf ÞÞ

p
 !

: ð15Þ
It can be shown by direct calculation that the covariance FTLE obtained from this definition and the standard FTLE
(Definition 2.2) have the same value if the second and higher order terms in (14) are negligible when compared to the first
order terms. In this case an initial circular blob deforms into an ellipse as shown in Fig. 6. The eigenvalues of the Cauchy–
Green tensor, C, are a2

1 and a2
2. The standard FTLE is r ¼ 1

jt�t0 j
log a1

a . The covariance matrix IðPf Þ is a diagonal matrix with

IðPf Þ11 ¼ 1
4 pa3

1a2 and IðPf Þ22 ¼ 1
4 pa1a3

2 giving kmaxðIðPf ÞÞ ¼ 1
4 pa3

1a2. The covariance matrix Iðf Þ is a diagonal matrix with

Iðf Þ11 ¼ Iðf Þ22 ¼ 1
4 pa4 giving kmaxðIðf ÞÞ ¼ 1

4 pa4. This gives the covariance FTLE, rI ¼ 1
jt�t0 j

log
ffiffiffiffiffiffiffi
a3

1a2

p ffiffiffiffi
a4
p

� �
. For volume preserving

flow maps, pa1a2 ¼ pa2. This gives the covariance FTLE, r ¼ 1
jt�t0 j

log a1
a , the same value as the standard FTLE if the higher or-

der terms in (10) are negligible.

The definition of rI avoids the linearization of the flow map and the computation of the stretching of line elements. Fur-
ther it is a set-oriented method and directly computes the finite time deformation of a set. The rI of any arbitrary large set is
well defined and can be calculated easily. Since I is the covariance matrix of f, it provides a probabilistic interpretation of the
FTLE. Simultaneously I can also be interpreted as the moment of inertia of the set B and provides a geometric description of
the deformation or distortion of the set. Thus the covariance based FTLE provides both a geometric and probabilistic descrip-
tion of the deformation of a set.

As described in Section 3, deformation of sets provides the motivation to define coherent sets. Loosely speaking, from (5),
a set Bi is almost-invariant under the flow map /t

t0
if PXBi

� X Bi
. The difference between PX Bi

and XBi
has been measured by

the second eigenvalue and eigenvector of P, [8]. For the case of non-autonomous systems where coherent sets can translate
and rotate, one way to view this difference is in terms of stretching measured by second moments of the probability density
functions. In Fig. 7, the set B1 is not stretched significantly and remains almost invariant while the set B2 is stretched and is
‘less’ invariant. The inequality of X Bi

and PX Bi
is captured by the second moments, that is, the covariance matrices of XBi

and
PXBi

. It is not possible to directly quantify the transport from one set to another from the FTLE, except in the case of linear
vector fields. The qualitative relationship between stretching defined by the covariance matrix and almost-invariance can be
used to define the analogues of AIS in time-dependent systems, as follows,

Definition 4.2. The coherence of a set B during ½t0; t� is rIðB; t0; tÞ.
Definition 4.3. A set B is almost-coherent during ½t0; t� if rIðB; t0; tÞ � 0.

This definition of coherence captures the essential feature of a coherent set: it does not mix or spread significantly in the

domain. To further illustrate the relation between coherence as defined here and mixing, consider the two sets B1 and B2

shown in Fig. 8. Also suppose sets B1 and B2 (of equal Lebesgue measure) contained a homogeneous distribution of two dif-
ferent types of tracers initially. After the finite time t � t0 the largest ball in B1 that contains only tracer 1 almost everywhere
within is BR with lðBRðxÞ \ /ðB1ÞÞ ¼ lðBRðxÞÞ for some x 2 /ðB1Þ. The largest ball in B2 that contains only tracer 2 almost



Fig. 8. The sets B1 and B2 are mapped to /ðB1Þ and /ðB2Þ, respectively during which the boundaries of the sets have increased in length by at least a factor of
2. Material lines in interior of these sets could have stretched too. Yet set /ðB1Þ is a coherent set since its covariance is almost the same as that of B1 while
the set /ðB2Þ does not remain coherent since the covariance of /ðB2Þ is much greater than that of B2.

Fig. 7. Stretching and almost invariant sets: (a) set B1 is almost invariant while (b) set B2 is not.
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everywhere within is BrðxÞ with lðBrðxÞ \ /ðB2ÞÞ ¼ lðBrðxÞÞ for some x 2 /ðB2Þ. The size of BR is larger than Br , i.e.
lðBRÞ > lðBrÞ. Thus coherent sets are those that have not mixed well with the rest of the domain. This definition can also
identify non-mixing translating sets of the type shown schematically in Fig. 5. In particular, values of rIðx; t0; tÞ determine
the family of sets of various degrees of coherence. Coherent sets can be identified by setting a heuristic threshold, say rmax

I ,
and considering as coherent sets the regions where rI 6 rmax

I . Thus, viewing rIðxÞ as a graph over the domain M, the coher-
ent sets are the ‘valleys’ of the graph, which will naturally be separated from one another by the ridges of the graph, which
may coincide with the LCSs.

Note that the sets identified in this way remain coherent only for times within the interval ½t0; t�. From our numerical
computations on smooth flow maps, coherent sets vary smoothly with t, i.e., those identified by rIðB; t0; t1Þ and
rIðB; t0; t2Þ are qualitatively similar if jt1 � t2j is small.

4.1. Advantages of the proposed definitions of FTLE and coherent sets

1. The theory of the classic FTLE is based on linearized stretching around individual trajectories. In practice the classic FTLE
method calculates the field rðx; t0; tÞ at specified grid points. This is a measure of time averaged linearized stretching at
the grid points only, from which there is no way to say how much a large set of positive measure deforms in a finite time.
On the other hand, the set-based FTLE rIðB; t0; tÞ assigns an FTLE value to sets of positive measure. Knowing the value of
rIðBi; t0; tÞ one can calculate the FTLE value for B ¼ [n

i Bi. The set-based FTLE connects the local deformation around a tra-
jectory to the statistics of a cluster of trajectories. In practice the set-based FTLE computations can rely on long time inte-
grations that produce nonlinear stretching and folding.

2. The definition of the set oriented FTLE and coherence of a set is a direct measure of the dispersion of a set. A set could
remain coherent even if its boundary or material lines within its interior stretch and fold. In the worst case the boundary
of the set could stretch many times over and attain a fractal like structure as shown in Fig. 8, but need not spread out. The
value of rIðB; t0; tÞ remains small for such sets.

3. The set oriented FTLE does not rely on the assumption of hyperbolicity of the flow map. However as we showed with the
example of the deformation of the ellipse, if such exponentially expanding and contracting directions exist then the set
oriented FTLE and the classic FTLE have the same value for a small time of integration. Thus the standard FTLE is a special
case of the set oriented FTLE.
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4. The set oriented FTLE method assigns a coherence value to every box Bi and any set which is composed of such boxes in
the domain. Even though the identification of large coherent sets relies on a heuristic threshold, this has the advantage of
identifying sets of various degrees of coherence and size in the domain.

5. Computation of rI

For computational purposes we divide the domain into n equal boxes B1;B2; . . . Bn each with a fixed number of initial
points (say N) (see Fig. 1). The points in a box B have coordinates ðx1i; x2iÞ; i ranging from 1 to N. Each of these N points
has discrete measure 1. Note that each of the sets Bi has discrete measure N, a scaled approximation of the Lebesgue measure
or area of the boxes. The initial probability density function initially supported on the set B is f ¼ 1

lðBÞ ¼ 1
N. Let the mean of

each box be initially denoted by ðx1; x2Þ, where
Fig. 9.
The me
be the
ðx1; x2Þ ¼
XN

i

ðx1i; x2iÞfð Þ ¼ 1
N

XN

i

x1i;
XN

i

x2i

 !
: ð16Þ
Then the covariance of the initial probability density function, Iðf Þ, is given by
Iðf Þ ¼ 1
N

XN

i¼1

ðx1i � x1Þ2
XN

i¼1

ðx1i � x1Þðx2i � x2Þ

XN

i¼1

ðx1i � x1Þðx2i � x2Þ
XN

i¼1

ðx2i � x2Þ2

2
66664

3
77775: ð17Þ
The set /t
t0
ðBÞ is approximated by the collection of the points /t

t0
ðx1i; x2iÞ, where i ¼ 1;2; . . . ;N. Since the image probability

density function, IðPf Þ, is supported on /t
t0
ðBÞ, the numerical calculation of the covariance, IðPf Þ, is
IðPf Þ ¼ 1
N

XN

i¼1

ð/t
t0
ðx1iÞ � n1Þ2

XN

i¼1

ð/t
t0
ðx1iÞ � x1Þð/t

t0
ðx2iÞ � n2Þ

XN

i¼1

ð/t
t0
ðx1iÞ � n1Þð/t

t0
ðx2iÞ � n2Þ

XN

i¼1

ð/t
t0
ðx2iÞ � n2Þ2

2
66664

3
77775; ð18Þ
where
ðn1; n2Þ ¼
1
N

XN

i

/t
t0
ðx1iÞ;

XN

i

/t
t0
ðx2iÞ

 !
ð19Þ
is the mean or expected value of the discrete approximation of /t
t0
ðBÞ. These calculations are illustrated in Fig. 9. The N points

in box B are mapped to their images by the flow map. The initial mean ðx1; x2Þ is calculated using (16). Similarly the mean of
the image set, ðn1; n2Þ, is calculated using (19). In both cases the mean is merely the geometric centroid of the set. Further we
note that ðn1; n2Þ – /t

t0
ðx1; x2Þ, the image of the mean need not be the mean of the image set. The covariance of the set B and

/t
t0
ðBÞ are calculated from the relative positions of the N points around the respective means using formulae (17) and (18).
The maximum eigenvalues of Iðf Þ and IðPf Þ are used in (15) to give the covariance FTLE. The covariance of a set A formed

by combining box sets, A ¼ [kBk, is found about the mean of A. Geometrically, (18) measures the covariance or the moment
of inertia of a cloud of N points distributed in a planar domain.
Illustration of the numerical calculation of the mean and covariance, in (16)–(18). The set B approximated by the N points is mapped to the set /t
t0
ðBÞ.

an of B and /t
t0
ðBÞ are merely the geometric centroids of the respective sets. Further we note that ðn1; n2Þ – /t

t0
ðx1; x2Þ, the image of the mean need not

mean of the image set.
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5.1. Computation of rI for autonomous and periodic vector fields

It is natural to expect the Perron–Frobenius operator to play a role in the computation of the covariance FTLE. The oper-
ator Pt

t0
can be found using a suitable set of K time intervals, ½t0; t1�; ½t1; t2�; . . . ; ½tK�1; tK �, where tK ¼ t, as the composition,
PtK
t0
¼ PtK

tK�1
. . .Pt2

t1
Pt1

t0
: ð20Þ
Let f be a uniform density function supported on a set B. Then, as before, PtK
t0

maps f under the action of the flow map to PtK
t0

f ,
i.e., f # PtK

t0
f . For time-independent, or time-periodic vector fields with period Dt, this calculation becomes particularly easy.

A Dt-periodic vector field defined by the time-dependent vector field,
_x ¼ Fðx; tÞ
is such that Fðx; t þ DtÞ ¼ Fðx; tÞ. The associated flow map be denoted by /t
t0
ðxÞ, which takes points x at time t0 to their loca-

tion at time t is periodic in the following sense,
/t
t0
ðxÞ ¼

Z t

t0

Fðx; sÞds ¼
Z tþDt

t0þDt
Fðx; sþ DtÞds ¼ /tþDt

t0þDtðxÞ:
Now consider an initial density f supported on the set B at time t0. The image of the density at time t is given by
Pt
t0

f ¼
Z
ð/t

t0
Þ�1ðBÞ

fdl ¼
Z
ð/tþDt

t0þDtÞ
�1ðBÞ

fdl ¼ PtþDt
t0þDtf : ð21Þ
When we are interested in the operator over integer multiples of the vector field period, i.e., tK ¼ t0 þ KDt, where, using
ti ¼ ti�1 þ Dt for i ¼ 1; . . . ;K , we get
PtK
t0
¼ ðPt0þDt

t0
ÞK : ð22Þ
In the case of the time reversible matrix approximation for P, we have ðPrÞtK
t0
� ððPrÞt0þDt

t0
ÞK . This method of approximating PtK

t0

avoids long time integration of trajectories. The projection of a uniform density function supported on the set Bi is the row n-
vector,
pf ¼ bi ¼ ½0;0; . . . ;1=lðBiÞ; . . . ;0; 0�; ð23Þ
with the only nonzero entry in the ith slot, which evolves to the row N-vector biðtKÞ given by,
biðtKÞ � biðt0ÞðPt0þDt
t0
ÞK : ð24Þ
The R.H.S of the above equation is merely the ith row of the matrix ðPt0þDt
t0
ÞK divided by lðBiÞ. The covariance of this set can be

found from the ith row of ðPt0þDt
t0
ÞK as follows,
IðbiðtKÞÞ �
1

lðBiÞ

Xn

j¼1

ððfj
1 � ni

1Þ
2ðPtK

t0
ÞijÞ

Xn

j¼1

ððfj
1 � ni

1Þðf
j
2 � ni

2ÞðP
tK
t0
ÞijÞ

Xn

j¼1

ððfj
1 � ni

1Þðf
j
2 � ni

2ÞðP
tK
t0
ÞijÞ

Xn

j¼1

ððfj
2 � ni

2Þ
2ðPtK

t0
ÞijÞ;

2
66664

3
77775 ð25Þ
where ðfj
1; f

j
2Þ are the centers (mean values) of each of the boxes, Bj, and ðni

1; n
i
2Þ ¼

Pn
j¼1ððf

j
1; f

j
2ÞðP

tK
t0
ÞijÞ. Intuitively the uni-

formly distributed points in box Bi are mapped into up to n boxes by the flow map /tK
t0

, say boxes Bj;Bk and Bm as shown
in Fig. 10. If the number of points that are mapped into each of the three boxes are Nj;Nk and Nm, then each of the three sets
Bj \ /tK

t0
ðBiÞ;Bk \ /tK

t0
ðBiÞ and Bm \ /tK

t0
ðBiÞ are approximated by Nj;Nk and Nm uniformly distributed points in the boxes Bj;Bk

and Bm. The mean or average of these dispersed points is ðni
1; n

i
2Þ. Then,
biðtKÞ ¼
1

lðBiÞ
½0; . . . ; ðPtK

t0
Þij;0; . . . ; ðPtK

t0
Þik;0; . . . ; ðPtK

t0
Þim; . . . 0�; ð26Þ
with nonzero values in rows j; k and m. The mean or center of this set is given by ðfj
1; f

j
2Þ. Proceeding thus, the covariance FTLE

for each of the boxes in the domain can be found from (25). As we noted earlier, PtK
t0
� ðPt0þDt

t0
ÞK and this is reflected in the

approximation /tK
t0
ðBÞ � 1

lðBiÞ
ðPtK

t0
ÞijXBj

\ ðPtK
t0
ÞikXBk

\ ðPtK
t0
ÞilXBl

.

6. Examples

We apply the method the covariance FTLE to three examples and compare the results with those obtained from compu-
tations of the standard FTLE and AIS. The first two are periodic vector fields and the third is the atmospheric flow on a con-
stant pressure surface, an aperiodic, finite-time vector field.



Fig. 10. Illustration of the calculation of the covariance, Iðv iðtÞÞ in (25). The initial uniform density function 1
lðBi Þ

supported on the set Bi is mapped to the
density function Pt

t0
ðBiÞ which is approximated by three uniform density functions 1

lðBj Þ
ðPt

t0
Þij; 1

lðBk Þ
ðPt

t0
Þik and 1

lðBm Þ ðP
t
t0
Þim supported on the sets Bj;Bk and Bm ,

respectively, for t ¼ t0 þ KDt, where K is an integer and Dt is the period of the underlying vector field.
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6.1. Lid-driven cavity flow

The first example we consider is the lid-driven cavity flow in which mixing has been recently studied by the method of
AISs in [28–30]. The model has been extensively studied in [44] and is considered here as the first example because of its
simple piecewise steady velocity field, which is described by the stream function
wðx; yÞ ¼
X2

n¼1

UnCnfnðyÞ sin
npx

a

� �
ð27Þ
defined on the domain M ¼ ½0; a� � ½�b; b� � R2 for time t 2 ½ksf ; ðkþ 1Þsf =2Þ, for integer k, where
fn ¼
2py

a
cosh

npb
a

� �
sinh

npy
a

� �
� 2pb

a
sinh

npb
a

� �
cosh

npy
a

� �
and
Cn ¼
a2

2np2b
a

2npb
sinh

2npb
a

� �
þ 1

� ��1

:

For time t 2 ½ðkþ 1Þsf =2; ðkþ 1Þsf Þ, the sign of the velocity term U1 is changed. This reflects the streamlines about x ¼ a after
every time sf =2.

Using symmetry arguments given in [44], a specific ratio of the magnitudes of the terms U2=U1 along with a fixed value of
the period of the velocity field, sf , is found such that it generates three period-3 fixed points in the domain ½0; a� � ½�b; b�. The
specific values of the constants that use are from [44]: U1 ¼ �1; U2 ¼ 0:841298; s�f =2 ¼ 4:740202, and the domain
½0; a� � ½�b; b� ¼ ½0;6� � ½�1;1�. A perturbation of the half-period of the velocity field away from the critical value of
s�f =2 ¼ 4:740202 destroys the fixed points. The method of AISs was used in [28–30] to study mixing for different values
of the perturbed half-period. Since our main interest here is to compare the AISs with coherent sets, we choose a single case,
a specific value of half-period sf =2 ¼ 4:848 for our study.

The domain is discretized into 120� 40 ¼ 4800 equal-sized square boxes, each box containing 100 uniformly distributed
points. The time-reversible Perron–Frobenius matrix Pr for a duration equal to sf , i.e., from t ¼ 0 to t ¼ sf is found from (2)–
(4). Fig. 11 shows the second right eigenvector v2 of the matrix ðPrÞ

sf
0 . The sign of the eigenvector is positive in a portion of

the domain and negative in the remainder. As explained in Section 2.1, the zero contour of the second eigenvector in Fig. 11
forms the boundary between the two AISs. The two AISs are shown in Fig. 11(b), in which the three black blobs correspond to



Fig. 11. (a) Second right eigenvector v2 for the lid-driven cavity flow and (b) AIS obtained from positive part of the second eigenvector of Pr , in black. The
phase space complement, in white, is also an AIS.

Fig. 12. FTLE from t ¼ 0 to t ¼ T for the lid-driven cavity flow, computed using the conventional line element approach (a)–(c), and using the covariance
based approach (d)–(f), for the given values of T.
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the positive part of the second eigenvector, and the phase space complement (in white), corresponds to the negative part.
The FTLE field obtained from the conventional line stretching method (13) for different integration times are shown in
Fig. 12(a)–(c). The covariance FTLE field for this system can be calculated either directly (18) or using the PF operator
(25). The FTLE field obtained from the direct covariance method using the same discretization as for the AISs is shown in
Fig. 12(d)–(f). The FTLE field rIð0;3sf Þ calculated from ððPrÞ

sf
0 Þ

3 using (25) is shown in Fig. 13.
Comparing the results in Fig. 12(a)–(c) and (d)–(f) we find that the covariance approach of computing the FTLE agrees

qualitatively with the standard FTLE. This agreement is in the structure of the FTLE field only (e.g., the high ridges, or LCSs)
and not in the exact values of the FTLEs. The FTLE fields in Fig. 12(a)–(c) look finer than those in Fig. 12(d)–(f) and, even
though both used the same 4800 � 100 (initial) points. This is because the regions of high deformation in 12(d)–(f) are iden-
tified by boxes of non-zero measure, while for the FTLE computed by the conventional line stretching method the ridges in
the FTLE field are codimension one, i.e., zero measure. However, the coarse-looking FTLE field computed by our new ap-
proach measures the deformation of sets, including higher order deformations, rather than that of line elements. Comparing
the FTLE fields in Figs. 12(f) and 13, we note that the values of the FTLE are underestimated by (25) though the qualitative
features of the FTLE field are the same.

Coherent sets are obtained by setting an arbitrary threshold of rmax
I ¼ 0:06 on the FTLE field obtained by the direct covari-

ance method. These coherent sets are shown in black in Fig. 14(a). These sets do not disperse nor mix quickly with the rest of



Fig. 14. Coherent sets (black) do not disperse significantly while non-coherent sets (gray) do. In (a) the three coherent sets (black) identified by our
rI 6 0:06 criterion and a non-coherent set (gray) are shown at t ¼ 0. At t ¼ s, the non-coherent set disperses significantly more than the coherent sets.
Figure (b) also shows mixing between the ‘particles’ of the non-coherent set with those of the coherent sets.

Fig. 13. FTLE field rIð0;3sf Þ calculated from ðPsf
0 Þ

3 using (25).
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the domain as non-coherent sets do. An example non-coherent set (gray) is also shown in Fig. 14(a). The non-coherent set
disperses and mixes with the rest of the domain quickly while the coherent sets (in black) do not, as shown in Fig. 14(b).

We note that the coherent sets we calculate are not exactly the same as the AISs shown in Fig. 11(b). However the inter-
pretation of almost invariance using the second eigenvector of Pr can be problematic when the higher eigenvalues are close
to the second eigenvalue. We computed the first 6 eigenvalues and vectors of the discretized Perron–Frobenius operator. The
values are k2 ¼ 0:9925; k3 ¼ 0:9829; k4 ¼ 0:9516; k5 ¼ 0:9473 and k6 ¼ 0:9434, with the corresponding eigenvectors v3

and v4 shown in Fig. 15 for comparison.
The invariance of a set B is given by qlf

ðBÞ in (5) and the eigenvalues and eigenvectors of Pr provide an approximate way
to divide the domain into two almost invariant sets, [8,11]. However if the eigenvalues of P are close to each other in mag-
nitude, one can obtain other AISs that are slightly less invariant than those obtained from the second eigenvector. From an
application point of view the eigenvectors, vk, where k P 3, are perhaps as important as the second eigenvector. Moreover
linear combinations of the eigenvectors can produce a family of AISs that could be the most physically important. This is the
case in earlier work [45] where eigenvectors ranging from the 11th to 39th were used to identify optimally almost invariant
sets. We can only conjecture that our FTLE approach identifies a particular combination of the eigenvectors of Pr correspond-
ing to closely spaced eigenvalues.

Next we show numerically that the coherent sets in Fig. 14(a) remain almost coherent under the action of the flow map.
We evolve unit density functions supported on the coherent sets and the AISs. We take a set of uniformly distributed par-
ticles in the coherent sets (Fig. 14(a)) and AISs (Fig. 11(b)) respectively and advect them. Fig. 16 shows the evolution of the
coherent and AISs. The coherent and the AISs in fig. 16(a) and (e) can be thought of as sets containing a tracer of unit con-
centration. Fig. 16(b)–(d) show that the coherent sets identified in 16(a) do not disperse significantly with time. The rIð0; sf Þ
values of each of the three sets from left to right in Fig. 16(b) are 0:0032;0:0056, and 0.0026, which shows that the sets do not
disperse significantly. For comparison the non-coherent set shown in Fig. 14 spreads quickly even when t ¼ sf with
rIð0; sf Þ ¼ 0:1314. The rIð0; sf Þ values of the AIS in Fig. 16(f) are 0:0018;0:0075 and 0.0017. These values are of the same
order of magnitude to those of the coherent sets identified by the rI criterion. The coherent sets identified by the rIð0; sf Þ
Fig. 15. Higher eigenvectors v3 and v4.



Fig. 16. Comparison of the rIð0; sf Þ-coherent sets (left) and eigenvector-based AISs (right) for the lid-driven cavity flow, i.e., the top sets are identical to
those in Figs. 14(a) and 11(b).

1120 P. Tallapragada, S.D. Ross / Commun Nonlinear Sci Numer Simulat 18 (2013) 1106–1126
remain coherent beyond t ¼ sf . The rIð0;3sf Þ values of each of the three sets in Fig. 16(d) are 0:0265;0:0352, and 0.0434,
which are still smaller than the rIð0; sf Þ of the non-coherent set. In fact, at t ¼ 3sf the coherent sets have almost the same
qualitative structure as the AISs in 16(h). The structure of the coherent sets is qualitatively the same as obtained by setting a
threshold on the value of the FTLE in Fig. 12. The identification of the coherent sets with AISs gets better with increasing time
as in Fig. 16(d) and (h).
6.2. Double gyre flow

The lid-driven cavity flow in the previous section is not only piecewise smooth, but piecewise time independent. Here we
consider the double gyre flow with the same parameters mentioned in Section 3. The domain is discretized into 50,000
equal-sized square boxes of dimensions 0:005� 0:005, with each box containing 625 uniformly distributed points. The FTLE
fields obtained for an integration period T ¼ 10, using the direct method of covariance (18) is shown in Fig. 17(a). Fig. 17(a)
shows the FTLE field obtained using ðPt0þDt

t0
Þ10 and (25). Here again we note that the numerical values of rIðBiÞ obtained from

both the methods are only approximately equal. However the use of the PF operator produces a smooth FTLE field.
Using the same discretization for the Perron–Frobenius operator P of the flow map as for the covariance FTLE, we found

the eigenvalues of P to be k2 ¼ 0:9997; k3 ¼ 0:9995; k4 ¼ 0:9987; k5 ¼ 0:9981 and k6 ¼ 0:9971. The eigenvalues for this
problem are very closely spaced and here we find that the eigenvectors v2 and v3, shown in Fig. 18, have a similar structure
as do the eigenvectors v4 to v6 (not shown). It has been pointed out in [46] that in problems where there exist a cluster of



Fig. 17. (a) FTLE fields for the double gyre flow obtained from the direct covariance FTLE method (18) and (b) using PF operator (25) for an integration time
of T ¼ 10.

Fig. 18. The eigenvectors, v2 and v3, of the ðPrÞT0 for the double gyre flow.
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eigenvalues close to 1, the computation of the eigenvectors are sensitive to the discretization of the domain. Observing the
plots of the eigenvectors v2 and v3 in Fig. 18 we can see that almost invariant sets obtained by using the zero contour of the
eigenvectors v3 are almost the same as the almost invariant sets obtained from v2.

By setting a threshold rmax
I ¼ 0:6, we obtain two coherent sets. The positive part of v2 is almost the entire left half, so we

set a threshold of 0.001 for the absolute value of v2 to obtain the AISs, as was done in [42]. The coherent sets identified by the
new FTLE approach and the AIS identified by the second eigenvector of the Perron–Frobenius operator for the double gyre
flow are shown in Fig. 19. We find that the coherent sets identified by both the methods are roughly the same, though the
method of AIS defines a compact boundary for the sets. But in this case the compact boundary is perhaps arbitrary since the
eigenvectors corresponding to higher eigenvalues identify different (overlapping) sets.
6.3. Atmospheric flow

We apply the same concept of coherent sets using the covariance FTLE to atmospheric flow, a time-dependent aperiodic
flow, defined by a meteorological velocity data set. Optimal coherent sets in the oceans and the atmosphere on continental
Fig. 19. (a) Coherent sets and (b) AISs in the double gyre flow.
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scales for long periods of time were investigated in [47,45]. We apply our method of covariance-based FTLE to identify sets
that persist for a few hours to days. The domain of the atmospheric flow in our example is the eastern United States. The
velocity field is obtained from the North American Mesoscale (NAM)-12 km Weather Research and Forecasting (WRF) Model
reanalysis data. This data set defines velocity data on a grid over North America at 3 h intervals, at points that are roughly
spaced 12.5 km apart. The resulting domain is highly leaky, often with more than a quarter of trajectories escaping the do-
main in 24 h. For time scales of a few hours to a few days, the problem of identifying coherent sets in such a leaky domain is
not possible using the AIS approach. Therefore, we must apply our definition of FTLE and coherent sets to qualitatively iden-
tify coherent sets that persist for a few hours.

Another motivation to study coherent sets in the atmosphere is to investigate the possible role played by punctuated
changes in the concentration of a tracer (see, e.g., [48]). A punctuated change is a rapid temporal change in the concentration
of a passive or active chemical or biological tracer at a sampling point. In [21], punctuated changes of the concentration of
fungi of the genus Fusarium in 73 aerial samplings were shown to be correlated to the motion of repelling and attracting LCS.
Here we focus on only one important series of samples [48], which provides a good test case for our formulation of coherent
sets. It was established that the Fusarium concentration in the atmosphere at 100 m altitude at the sampling location
(37:1971	N latitude and 80:5738	W longitude) was high; 12.3 spores/m3 and 7.5 spores/m3; at 14:00 and 15:00 UTC, respec-
tively on 1 May 2007 while at 20:15 UTC and on the same day it was low; 2.1 spores/m3 and 1.2 spores/m3 respectively (all
times listed will be UTC from now on). The identification of high and low concentration is based on the average concentra-
tion of the spores found in the lower atmosphere throughout the year. The reader is referred to [21] for details on the cal-
culation of spore concentration from raw data. We show that two distinct sets were sampled leading to the variation in the
spore count. For our computations we used the NAM-12 km WRF reanalysis data on a 900 mb pressure surface (correspond-
ing to the height of the sampling location) in a domain that is 600 km � 600 km centered around the geographical location of
the sampling point (the circle in the center of Figs. 20 and 21). We discretized the domain into 14,400 square boxes each of
size 10 km � 10 km and containing 100 uniformly spaced points and integrated all the 1.44 � 106 points for a duration of
24 h. The covariance-based FTLE is shown in Fig. 20.

We used a threshold value of 0.1/hr for the covariance FTLE field to obtain coherent sets at 09:00 on 1 May 2007. The
evolution of these coherent sets in forward time is shown in Fig. 21. From Figs. 20 and 21 it is clear that coherent sets once
identified (09:00), remain coherent for many hours. Further the evolution of coherent sets in forward time is such that they
coincide with the sets of a low FTLE value in future time. In Fig. 21(a) and (b) a coherent set persists over the sampling point.
The movement of this coherent set away from the sampling point leads to sampling a non-coherent set at 15:00 and the
resulting spike in the concentration of the Fusarium spores. The sampling of another distinct coherent set at 21:00 on 1
May and 00:00 on 2 May results in a fall in the concentration of the Fusarium spores. While we did not collect any samples
on 1 May 2007 before 15:00, the samples collected at 15:00 on the previous day, 30 April 2007, show a low concentration of
the spores. We hypothesize that the concentration of the spores would have been low between 09:00 and 12:00 on 1 May,
since a distinct coherent set was sampled at these times. These results show that finite-time coherent sets may play an
important role in punctuated changes of a tracer in the atmosphere. Computations of coherent sets at a finer temporal
and spatial scale are necessary to confirm if different coherent sets were sampled between 14:00 and 15:00.
7. Conclusion and discussion

In complex time-dependent flows, stretching and folding can be high, and these play an important role in mixing and
transport. The standard FTLE, when calculated accurately, quantifies only the time averaged stretching in a local neighbor-
hood of reference trajectories. Moreover there are computational difficulties in accomplishing this calculation accurately for
vector fields based on numerical data, leading to spurious values of the FTLE. For this reason the classic definition of the FTLE
often generates spurious values of FTLEs. The covariance-based method of computing the FTLE, introduced in this paper, does
not use the linearized equations of a flow map. Thus arbitrary integration times that produce nonlinear stretching and fold-
ing of material lines do not affect our computations. Moreover our redefinition of the FTLE is a set based definition and iden-
tifies the dispersion of sets of non-zero measure. The classic FTLE is a time-varying scalar field rðx; t0; tÞ, defined on a set of
grid points, which calculates linearized time-averaged stretching for material elements initially around the grid points. From
this it is not possible to identify how much a set of positive measure in the domain stretches or disperses. With our set ori-
ented approach we can calculate the FTLE of any set B which is composed of small boxes Bi. The probabilistic covariance ma-
trix can be interpreted geometrically as the moment of inertia of a set which gives a measure of stretching and dispersion in
phase space. Thus the proposed set oriented definition of the FTLE offers a straightforward connection between the evolution
of probability densities and finite time stretching experienced by material lines. The set oriented FTLE has the same value as
the standard FTLE when the growth of a perturbed trajectory is linear, as shown with sample calculation in Section 4. Thus
our definition is an extension of the standard FTLE and can also be used in applications where the standard FTLE is used.
While the modified definition of the FTLE has a probabilistic interpretation, it suffers from the drawback of using the second
moments of a density function. Thus one cannot pose the question of finding an optimal union of coherent sets as an eigen-
value problem. The computational cost of a brute-force search amongst the density functions to identify an optimal union of
coherent sets is prohibitive. We leave the development of a systematic method to identify optimal coherent sets from the rI

field to future work.



Fig. 20. Covariance-based FTLE field for a duration of T ¼ 24 h for initial starting times (a)–(f). Red regions represent sets with high covariance FTLE and
blue regions represent sets with low covariance FTLE. The sampling region is represented by the open circle at the middle of each panel. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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We identified coherent sets by setting a threshold value on the covariance-based FTLE, rI . Viewing rI as a graph over the
domain, the coherent sets are the ‘valleys’, and are naturally separated from one another by the ‘ridges’ of high rI , providing
a concrete link between the framework of coherent sets and that of codimension one Lagrangian coherent structures. While



Fig. 21. Evolution of the coherent sets obtained by the FTLE method for an integration time of 24 h. The coherent sets (gray regions) were identified from
the covariance FTLE field at the initial time (Fig. 20(a)) by setting a threshold of rmax

I ð0; sÞ ¼ 0:1= h. Figures (b)–(f) show the evolution of these sets. The set
boundaries correspond roughly with the ridges of high FTLE in Fig. 20, but the agreement deteriorates with time.
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using a threshold value for the FTLE may not identify optimally coherent sets, it does offer a simple way to identify finite-
time coherent sets in a heuristic manner in complex time-dependent flows. We point out that for many time-dependent sys-
tems this is not a serious drawback of the method because it is not obvious that time-dependent systems always admit a
partitioning into two optimally coherent sets. This was demonstrated with examples related to mixing and transport in fluid
flows. In the first two examples, the lid-driven cavity flow and the double gyre flow, our method provided a good approx-
imation of coherent sets when compared with the AIS. The third example, the case of atmospheric flow, presents many dif-
ficulties due to the complex time-varying nature of the flow, the highly translating nature of the flow map, and the leaky
domain. While this situation renders the method of AIS impossible, our method still identified approximate finite-time
coherent sets. We view this method as providing a first guess to a systematic optimization procedure to identify maximally
coherent sets in time dependent flows.

As a specific application, the definition of coherent sets using the covariance FTLE should be useful to track and predict the
movement of sets of tracers such as pollutants, pathogens, and other passive chemical and biological tracers, in environmen-
tal flows such as those found in the atmosphere, oceans, and lakes.

Acknowledgments

We wish to thank the following colleagues for helpful discussions and comments: Mohsen Gheisarieha, Piyush Grover,
Mirko Hessel-von Molo, Pankaj Kumar, and Mark Stremler. This material is based upon work supported by the National Sci-
ence Foundation under Grant Nos. 0919088, 1100263, and 1150456. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

[1] Wiggins S. Chaotic transport in dynamical systems. Interdisciplinary applied mathematics. New York: Springer; 1993.
[2] Ide K, Small D, Wiggins S. Distinguished hyperbolic trajectories in time dependent fluid flows: analytical and computational approach for velocity fields

as data sets. Nonlinear Process Geophys 2002;9:237–63.
[3] Wiggins S. The dynamical systems approach to Lagrangian transport in oceanic flows. Ann Rev Fluid Mech 2005;37:295–328.
[4] Shadden SC, Lekien F, Marsden J. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional

aperiodic flows. Physica D 2005;212:271–304.
[5] Lekien F, Shadden SC, Marsden J. Lagrangian coherent structures in n-dimensional systems. J Math Phys 2007;48.
[6] Haller G. Lagrangian coherent structures and the rate of strain in a partition of two-dimensional turbulence. Physica D 2011;240:574–98.
[7] Haller G. A variational theory of hyperbolic Lagrangian Coherent Structures. Phys Fluids A 2001;13:3368–85.
[8] Dellnitz M, Junge O. On the approximation of complicated dynamical behavior. SIAM J Numer Anal 1998;36:491–515.
[9] Dellnitz M, Junge O, Koon WS, Lekien F, Lo MW, Marsden JE, Padberg K, Preis R, Ross SD, Thiere B. Transport in dynamical astronomy and multibody

problems. Int J Bifurcat Chaos 2005;15:699–727.
[10] Dellnitz M, Junge O, Lo MW, Marsden JE, Padberg K, Preis R, Ross SD, Thiere B. Transport of Mars-crossing asteroids from the quasi-Hilda region. Phys

Rev Lett 2005;94:231102.
[11] Froyland G, Dellnitz M. Detecting and locating near-optimal almost-invariant sets and cycles. SIAM J Sci Comput 2003;24:1839–63.
[12] Froyland G, Lloyd S, Santitissadeekorn N. Coherent sets for nonautonomous dynamical systems. Physica D 2010;239:1527–41.
[13] Froyland G, Santitissadeekorn N, Monahan A. Transport in time-dependent dynamical systems: finite time coherent sets. Chaos 2010;20:043116.
[14] P.C. Du Toit, Transport and separatrices in time dependent flows. Ph.D. thesis, California Institute of Technology; 2010.
[15] Dellnitz M, Hohmann A, Junge O, Rumpf M. Exploring invariant sets and invariant measures. Chaos 1997;7:221.
[16] Pierrehumbert RT. Chaotic mixing of tracers and vorticity by modulated traveling Rossby waves. Geophys. Astrophys. Fluid Dyn. 1991;58:285–320.
[17] Pierrehumbert RT. Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids 1991;3A:1250–60.
[18] Bowman K. Manifold geometry and mixing in observed atmospheric flows. Unpublished manuscript. Available from: http://geotest.tamu.edu/

userfiles/213/manifold_geometry.pdf.
[19] Coulliette C, Lekien F, Paduan JD, Haller G, Marsden J. Optimal pollution mitigation in Monterey bay based on coastal radar data and nonlinear

dynamics. Environ. Sci. Technol. 2007;41:6562–72.
[20] Tallapragada P, Ross SD. Particle segregation by Stokes number for small neutrally buoyant spheres in a fluid. Phys. Rev. E 2008;78.
[21] Tallapragada P, Ross SD, Schmale DG. Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos

2011;21:033122.
[22] Lekien F, Ross SD. The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos

2010;20:017505.
[23] Tang W, Mathur M, Haller G, Hahn DC, Ruggiero FH. Lagrangian coherent structures near a subtropical jet stream. J. Atmos. Sci. 2010;67:2307–19.
[24] Bowman K. Observations of fine-scale transport structure in the upper troposphere from the high-performance instrumented airborne platform for

environmental research. J. Geophys Res: 112.
[25] Wilson M, Peng J, Dabiri JO, Eldredge JD. Lagrangian coherent structures in low Reynolds number swimming. J. Phys. Condensed Matter

2009;21:204105.
[26] Harrison CS, Glatzmaier GA. Lagrangian coherent structures in the California current system – sensitivities and limitations. Geophys. Astrophys. Fluid

Dyn. 2010:1–20.
[27] Eldredge JD, Chong K. Fluid transport and coherent structures of translating and flapping wings. Chaos 2010;20:017509.
[28] Grover P. Finding and exploiting structure in complex systems via geometric and statistical methods. PhD thesis, Virginia Polytechnic Institute and

State University; 2010.
[29] Stremler MA, Ross SD, Grover P, Kumar P. Topological chaos and periodic braiding of almost-cyclic sets. Phys. Rev. Lett. 2011;106:114101.
[30] Grover P, Ross SD, Stremler MA, Kumar P. Topological chaos, braiding and bifurcation of almost-cyclic sets. Chaos Int J Nonlinear Sci, in press.
[31] Kelley Douglas H, Ouellette Nicholas T. Separating stretching from folding in fluid mixing. Nat. Phys. 2011. http://dx.doi.org/10.1038/nphys1941.
[32] Mendoza C, Mancho AM. Hidden geometry of ocean flows. Phys. Rev. Lett. 2010;105:038501.
[33] Lasota A, Mackey MC. Chaos, fractals and noise. Stochastic aspects of dynamics. Springer-Verlag; 1994.
[34] Froyland G. Statistically optimal almost-invariant sets. Physica D 2005;200:205–19.
[35] Dellnitz M, Junge O. Set oriented numerical methods for dynamical systems. Handbook of dynamical systems, vol. 2. Amsterdam: North-Holland;

2002.

http://dx.doi.org/10.1038/nphys1941


1126 P. Tallapragada, S.D. Ross / Commun Nonlinear Sci Numer Simulat 18 (2013) 1106–1126
[36] Pesin Y, Barreira L. Encyclopedia of Mathematics and its applications 115. Non uniform hyperbolicity. Cambridge University Press; 2007.
[37] Haller G, Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 2000;147:352–70.
[38] Haller G. Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 2001;149:248–77.
[39] Eeberly D. Ridges in image and data analysis. 2nd ed. Kluwer Academic Publishers; 1996.
[40] Senatore C, Ross SD. Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent

field. Int J Numer Methods Eng 2011;86:1163–74.
[41] Winkler S. Lagrangian dynamics in geophysical fluid flows. PhD thesis, Brown University; 2001.
[42] Froyland G, Padberg K. Almost-invariant sets and invariant manifolds connecting probabilistic and geometric descriptions of coherent structures in

flows. Physica D 2009;238:1507–23.
[43] Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D 1985;16:285–317.
[44] Chen J. Topological chaos and mixing in lid-drive cavities and rectangular channels. PhD thesis, Virginia Polytechnic Institute and State University;

2008.
[45] Dellnitz M, Froyland G, Horenkamp C, Padberg-Gehle K, Gupta AS. Seasonal variability of the subpolar gyres in the Southern Ocean: a numerical

investigation based on transfer operators. Nonlinear Process. Geophys. 2009;16:655–64.
[46] Fritzsche D, Mehrmann V. An SVD approach to identifying metastable sets of Markov chains. Technical report from Institut fur Mathematik: Technishe

Universitat Berlin; 2006.
[47] Froyland G, Santitissadeekorn N, Monahan A. Optimally coherent sets in geophysical flows: a new approach to delimiting the stratospheric polar

vortex. Phys. Rev. E 2010;82:056311.
[48] Schmale DG, Ross SD, Fetters TL, Tallapragada P, Wood-Jones AK, Dingus B. Isolates of Fusarium graminearum collected 40 to 320 m above ground level

cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia 2011. http://dx.doi.org/10.1007/s10453-011-9206-2.

http://dx.doi.org/10.1007/s10453-011-9206-2

	A set oriented definition of finite-time Lyapunov exponents and coherent sets
	1 Introduction
	2 Review of almost-invariant sets and Lagrangian coherent structures
	2.1 Almost-invariant sets
	2.2 FTLE and LCS

	3 Limitations of the methods of FTLE-LCSs and AISs in time-dependent vector fields
	4 Set-oriented definition for FTLE and coherent sets
	4.1 Advantages of the proposed definitions of FTLE and coherent sets

	5 Computation of ? 
	5.1 Computation of ? for autonomous and periodic vector fields

	6 Examples
	6.1 Lid-driven cavity flow
	6.2 Double gyre flow
	6.3 Atmospheric flow

	7 Conclusion and discussion
	Acknowledgments
	References


