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a b s t r a c t

Models of biped walking have demonstrated that stable walking motions are possible without active
control. Stability of these motions has typically been quantified by studying the stability of an associated
Poincaré map (orbital stability). However, additional insight may be obtained by examining how
perturbations evolve over the short-term (local stability). For example, there may be regions where
small perturbations actually diverge from the unperturbed trajectory, even if over the entire cycle small
(but perhaps not large) perturbations are dissipated. We present techniques to calculate local stability,
and demonstrate the utility of these techniques by examining the local stability of the 2D compass
biped. These techniques are relevant to the design of controllers to maintain stability in robots, and in
understanding how the neuromuscular system maintains stability in humans.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Passive dynamicmodels of bipedwalking have proven useful in
understanding generalized principles that governwalkingmotions
[1–9]. The term passive dynamics arises from the ability of these
models to walk without active control. To replace the energy lost
in foot impacts and friction, these models walk down a slight
slope. McGeer was the first to show that a walkingmotion actually
emerges as a stable periodic cycle from the dynamic equations
governing a simple planar model [1]. More recently, Collins, et al.,
built a more complicated physical model, not restricted to planar
motion, that also walks down a slope and very closely resembles
humanwalking [8]. The beauty of these devices is that their energy
consumption is very low, and that they exhibit dynamically stable
walking motions. This approach to studying walking has been
adopted by both the robotics community, where the aim is to
design robots that are as versatile and efficient as humans, and
the biomechanics community, where the goal is to improve our
understanding of walking.
One of the most important factors for successful walking is

stability [10]. In fact, the physicalmodels and robots that have been
designed around passive dynamic walkers are very susceptible to
small disturbances; as openly admitted by their designers, who
tend to remain within arms reach at all times. To date, analysis
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of stability has focused primarily on stability of step-to-step, or
Poincaré, maps. Poincaré maps are useful for determining if a
periodic cycle exhibits orbital stability. This approach, however,
misses the rich dynamic behavior in the neighborhood of the
solution trajectory. For example, there may be regions where
perturbations diverge from the solution trajectory, referred to
as local instability, and other regions where perturbations are
attracted back to the solution, local stability. In fact, orbital
stability (or instability) results from the competition of these local
tendencies integrated over the cycle [11].
The goal of this study was to characterize the changing

local dynamic stability of a passive dynamic model of walking.
Moreover, we expanded techniques designed for analyzing local
stability of continuous periodic cycles to handle walking models,
which often include continuous dynamics, coupled with a discrete
event to approximate foot-strike collisions. One advantage of
calculating local stability is the ability to quantify the time-varying
vector direction of instability in state space, and identify phases of
the walking cycle that may be more susceptible to disturbances.
For the robotics community, understanding local stability will be
useful in designing controllers to maintain stability. Local stability
is also relevant to biomechanists and clinicians interested in
instability and falling in older adults and clinical populations (e.g.
diabetic peripheral neuropathy, vestibular disorders) because of
the potential to identify individuals with poorer stability at all
phases of the walking cycle, who may be at greater risk for falling.
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Fig. 1. Two-segment walker with hip mass, M , weightless legs, and point masses
at the feet,m.

2. Model

The model explored in this paper is the 2D compass biped with
point feet (Fig. 1). It consists of twomass-less legs connected at the
hip, a point mass at the hip, M , and a point mass at each foot, m.
This model walks down a rigid surface at a slope of γ . The walking
cycle is composed of a swing phase, where the stance foot does
not slip, and behaves like a pin joint, and an instantaneous double-
stance phasewhen the swing foot strikes the ground. At foot-strike,
we assume an inelastic collision brings the swing foot to rest, and
calculate the angular velocities after foot-strike, by conservation
of angular momentum. Thus, the solution requires a two-part
approach of (A) solving the continuous swing-phase equations
until a foot-strike occurs, and (B) applying the instantaneous
conservation of momentum equations. Following the foot-strike
event, stance- and swing-states are swapped before continuing
with steps (A–B) for a subsequent step. This section concludeswith
the techniques used to find periodic solutions (C).

2.1. Swing phase equations of motion

Defining the mass ratio between foot and hip mass, β =
m/M , and rescaling time by

√
`/g , the non-dimensional equations

describing themotion of the bipedwalker are only functions β and
γ ,[
1− 2β (cosφ − 1) β (cosφ − 1)
β (cosφ − 1) β

] [
θ̈

φ̈

]
+

[
−β

(
φ̇2 − 2θ̇ φ̇

)
sinφ

−βθ̇2 sinφ

]
+

[
(1+ β) sin (γ − θ)− β sin (−θ + φ + γ )

β sin (−θ + φ + γ )

]
=

[
0
0

]
(1)

where θ is the angle of the stance leg with respect to the normal
of the inclined plane, and φ is the angle between the legs (Fig. 1).
These two, second order equations may be reorganized as a set
of four first-order equations in Hamiltonian form. This may be
achieved by defining momenta coordinates, pθ and pφ , according
to,[
pθ
pφ

]
=

[
1− 2β (cosφ − 1) β (cosφ − 1)
β (cosφ − 1) β

] [
θ̇

φ̇

]
. (2)

Defining the state s =
[
θ φ pθ pφ

]T, these two second-order
differential equations may be expressed as a set of four nonlinear
first-order equations, (see Box I). These four first-order swing-
phase equations represent a typical initial value problem, andmay
be solved numerically, given an initial state.
Since this system is conservative, we are guaranteed that the
Hamiltonian energy is constant during swing-phase. This is one of
the reasons it is desirable to express the equations in Hamiltonian
form. The Hamiltonian energy, H(s), is:

H (s) = (1+ β) cos (γ − θ)− β cos (γ − θ + φ)

+
p2θ + (2− 2 cosφ) pθpφ +

(
2− 2 cosφ + β−1

)
p2φ

2+ 2β sin2 φ
. (3)

2.2. Foot-strike transition equations

Foot-strike occurs when the swing leg has passed in front of
the stance leg and the inter-leg angle is exactly twice the stance
leg angle, φ − 2θ = 0. At this event, the swing-phase numerical
integration is halted, and an impulsive inelastic collision brings the
swing foot to rest.We assumeno impulsive forces act on the former
stance foot as it leaves the ground [1,7]. To calculate the angular
velocities after the foot-strike collision, we apply conservation
of angular momentum about the new stance foot for the entire
system, and about the hip for the new swing foot. Furthermore,
since the impulse is assumed to occur instantaneously, the stance
and inter-leg angles are constant. Additionally, to prepare for
the next step, the states are swapped as part of the foot-
strike transition. The transition from pre (− superscript) to post
(+ superscript) may then be described by a linear operator,

s+ =

 θφpθ
pφ


+

=


1 −1 0 0
0 −1 0 0

0 0
cosφ

1+ β sin2 φ
cosφ(1− cosφ)
1+ β sin2 φ

0 0 0 0



×

 θφpθ
pφ


−

= G
(
s−
)
. (4)

This matrix is for the more general case where φ − 2θ is
not required to be zero, which might arise from walking over an
irregular surface, and is used for tracking a disturbance across
the foot-strike event (see Section 3.4). When foot-strike satisfies
φ − 2θ = 0, we may reduce this matrix to a rank 2 matrix,

s+ =

 θφpθ
pφ


+

=


0 −

1
2

0 0
0 −1 0 0

0 0
cosφ

1+ β sin2 φ
cosφ(1− cosφ)
1+ β sin2 φ

0 0 0 0



×

 θφpθ
pφ


−

= G
(
s−
)
. (5)

2.3. Walking solutions

For the model to walk, there must be a solution to the swing-
phase (continuous) and foot-strike (discrete) equations that is a
non-stationary solution for all time, e.g. a periodic cycle, a quasi-
periodic cycle, or a chaotic attractor. Interestingly, it has been
generally accepted that for a given parameter set, if a stable
solution exists, there will be one and only one stable solution [2,7].
Previous research has considered walking solutions as fixed points
of the Poincaré section measured at the foot-strike event [1,2,4,7].
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ṡ =



pθ + (1− cosφ) pφ
1+ β sin2 φ

pφ + β (1− cosφ)
(
pθ + 2pφ

)
β
(
1+ β sin2 φ

)
− (1+ β) sin (γ − θ)+ β sin (γ − θ + φ)

−β sin (γ − θ + φ)+
sinφ

(
pθ + (1− cosφ) pφ

(
β cosφpθ − (1+ β − β cosφ) pφ

))(
1+ β sin2 φ

)2


= F (s)

Box I.
Fig. 2. Left: Equilibrium solution, seq(t)-dark blue, and perturbed solutions shown
in light blue. Right: Intersection of a perturbed solution, sΣi , and its subsequent
intersection, sΣi+1 , with the Poincaré section,Σ . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

Poincaré sections are constructed from a hypersurface in the state-
space that is transverse to the solution of the continuous-time
dynamics (Fig. 2). Our Poincare section is the three-dimensional
hypersurface, Σ, given by φ − 2θ = 0. The relationship between
a previous, sΣi , and a subsequent, s

Σ
i+1, intersection of the solution

with this hypersurface is expressed as a Poincaré map, P,

sΣi+1 = P
(
sΣi
)

(6)

where the superscript Σ denotes that the state is in the
hypersurface Σ. One possible walking solution is for the current
step to exactly match the subsequent step, sΣeq = P

(
sΣeq
)
.

This equilibrium solution, sΣeq, represents a periodic (period-one)
solution and is a fixed point of the map. Higher period solutions
may also exist, and represent solutions of the form sΣeq = Pk

(
sΣeq
)
,

where k is the number of steps before returning to the equilibrium
solution [12].
Taking the Poincaré section at the instant of foot-strike

reduces the search space from four dimensions to two. This is
a consequence of the geometry, which requires that the inter-
leg angle is twice that of the stance leg angle. Moreover, by
concentrating mass at the feet, the post-foot-strike momentum
coordinate, pφ , is always zero. Period-one walking solutions were
found numerically using the Matlab function fminsearch. The
Matlab function ode45 was used to numerically integrate the
swing phase dynamic equations. Additional techniques for finding
walking solutions are discussed in [1,7,13].

3. Stability of biped walking

To date, stability analysis has focused largely on analyzing
the stability of fixed points of the Poincaré map. This type of
stability analysis is useful for determiningwhether the equilibrium
solution exhibits orbital stability. For example, if all solutions
that intersect the Poincaré section near the fixed point return
to the fixed point on subsequent steps, then the equilibrium
solution exhibits orbital asymptotic stability (Fig. 2). Conversely,
Fig. 3. Left: Locally stable region (green) and unstable (magenta) along a trajectory
seq(t). Right: Examples of the locally rotating reference frame defined by the
tangent direction (red) and orthogonal directions (green) spanning the orthogonal
hypersurface Γ (t), at three points along the trajectory seq(t). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

if upon subsequent steps intersections with the Poincaré section
diverge from the fixed point, the equilibrium solution is unstable.
Orbital stability reduces the question of stability of a periodic
orbit to the stability of a fixed point of an associated discrete
map. This reduction, however, ignores potentially useful stability
information along the equilibrium solution, when it is between
Poincaré intersections. For example, there may be regions along
the equilibrium solution where perturbed solutions will tend
to diverge from the equilibrium solution (local instability) and
regions where perturbed solutions will converge back to the
equilibrium solution (local stability) (Fig. 3). Orbital stability (or
instability) results from these competing local tendencies averaged
over the entire cycle [11].
We first briefly review a numerical technique that has been

previously used to calculate orbital stability for the biped walker
(A). In B and C , the local stability during swing phase is derived.
Section D is devoted to how foot-strike collision affects stability.
Lastly, we demonstrate how orbital stability may be calculated
from the local stability measures for this hybrid continuous-
discrete system (E).

3.1. Orbital dynamic stability

Orbital stability of a given walking solution may be quantified
by calculating eigenvalues of an estimated Jacobian of the Poincaré
map. First, a periodic solution for a given slope,γ , andmass ratio,β ,
is found numerically. Next, evolution of two linearly independent
perturbation vectors about the fixed point are tracked forward
to their subsequent intersections with the Poincaré section. Since
the foot-strike event is rank two, perturbations need only be two-
dimensional, but theymust be in the hypersurfaceΣ. Integration of
the swing-phase equations requires the full four dimensions. One
map between two possible perturbation coordinates and the full
four dimensional state is the 2 by 4 matrix Ξ,

Ξ =

[
1 · 5−1/2 2 · 5−1/2 0 0
0 0 1 0

]
and
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Fig. 4. Maximum of the absolute value of eigenvalues of the estimated Jacobian
for period-one solutions for combinations of slope, γ , andmass ratio, β . Period-one
solutions are stable where this plot is below one. The two dash-dot lines show the
slices of this parameter space that are presented in Figs. 6 and 7. δθδφδpθ
δpφ

 = ΞT ·

[
δΣ1
δΣ2

]
and (7)

where δΣ are perturbations in the two-dimensional frame.
An estimate of the Jacobian of the Poincare map for the fixed

point may then be obtained from,

DsP|sΣeq ≈ ∆Σ
f ·
(
∆Σ
0

)−1 (8)

where ∆Σ
f and ∆Σ

0 are 2 × 2 matrices of the final perturbation
vectors after integration of the swing equations and discrete
foot-strike event, and the initial perturbation vectors in Σ,
respectively. If the absolute value of any eigenvalue of the
estimated Jacobian is greater than one, perturbed solutions will
eventually diverge from the equilibrium. Thus, the equilibrium
solution is considered unstable. When all the eigenvalues are
inside the unit circle, subsequent intersections converge to the
equilibrium and asymptotic stability is achieved.
Fig. 4 shows the maximum of the absolute value of the

eigenvalues of the estimated Jacobian for period-one solutions for
the parameters β and γ . Orbital stability is achieved where the
maximum of the eigenvalue magnitudes is less than one. Period-
one walking cycles are a symmetric walk, i.e. the left and right leg
steps are identical. As the model is sent down steeper slopes, the
stable walking pattern bifurcates to a period-two, then a period-
four walking cycle, and so on until the stable attractor appears
chaotic [2,4,7].

3.2. Local dynamic stability

For a dynamic system described by,

ṡ = F (s) (9)

let seq(t) be a periodic orbit that includes the fixed point, sΣeq, of the
Poincaré map. Further, let seq(t) + δ(t) be a perturbed trajectory.
Substituting the perturbed trajectory into Eq. (9) and assuming
the perturbation is initially small such that its evolution may be
described by linearization about the equilibrium trajectory, we
find,

δ̇ (t) = DsF|seq(t) · δ (t) (10)

where DsF|seq(t) is the Jacobian of F evaluated along the periodic
solution, seq(t). The local rate of expansion (or contraction) of a
volume in the state-space, which describes and constrains the
short-time evolution of all possible perturbed trajectories about s,
is given by the divergence of the flow,
⇀

∇ ·F = div F (s) = trace (DsF) =
n∑
i=1

∂ ṡi
∂si
=

n∑
i=1

λi (11)

where λi are the eigenvalues of the Jacobian of F.
Since swing-phase is a conservative system, in canonical

Hamiltonian form, we are guaranteed that the divergence of F
is zero. It should be noted, however, that zero divergence is not
guaranteed for other state-space coordinate frames, for instance
coordinates and velocities, and is an important reason for choosing
conjugate coordinate-momentum pairs as state-space variables.
Zero divergence does not guarantee stability, as unstable periodic
orbits are found in many examples of autonomous Hamiltonian
systems of two or more degrees of freedom. This is due to the fact
that in Hamiltonian systems, stable and unstable directions come
in pairs, yielding overall instability even though their rates balance
to give a divergence of zero [14].

3.3. Vector components of local dynamic stability

Further insight into the local stability is gained by interpreting
the individual elements of the Jacobian of F. Diagonal elements
capture the local divergence (convergence) rates along each state
variable direction. Off-diagonal elements indicate rates that couple
the perturbations from the other state variable directions. From
this point forward, we will refer to divergence and convergence
rates simply as divergence rates, recognizing that convergence is
the result of a negative divergence rate.
To improve the interpretation of the divergence rates, we

change the frame of reference from which perturbations are
viewed [11]. One natural transformation is to calculate the
eigenvalues, λi(t), and eigenvectors, ei(t), of DsF (s) |seq(t), where
i = 1, . . . , n. This transformation yields the divergence rates
at time t , λi(t), which are now uncoupled, along the changing
eigenvector directions. Furthermore, the linearized solution to Eq.
(10) at time t , describes the short-term time evolution, t + dt , of
the perturbation δ(t),

δ (t + dt) =
n∑
i=1

bi (t) ei (t) exp (λi (t) dt) (12)

where the bi(t) coefficients are determined by the initial condition
δ(t). If the real part of λi(t) is less than zero for all i, any
perturbation about the point seq(t) is drawn back toward seq(t)
in the near future, i.e. in the time interval [t, t + dt]. Thus, the
equilibrium solution is termed locally stable at time t . Otherwise,
the equilibrium solution is locally unstable.
The real and imaginary parts of the four eigenvalues for the

swing-phase dynamics are shown in Fig. 5. For all of the swing
phase, there is one pair of equal and opposite eigenvalueswith only
real components, and one conjugate pair of imaginary eigenvalues,
as expected for a canonical Hamiltonian system. Since the real part
of one eigenvalue is positive throughout swing-phase, the entire
swing-phase exhibits one locally unstable direction in the state-
space, even though the complete solution with foot-strike may be
orbitally stable (Fig. 4).This is an example of global stability of a
solution despite local instability [11]. In this case, as opposed to
the examples in [11], the global stability arises despite the local
instability of the continuous dynamics due to dimension collapse
at the discrete foot-strike event, as described in the next section.
Increasing the foot to hip mass ratio (β), increased both the

average andmaximumof themagnitudes of the real and imaginary
eigenvalues (Fig. 5). Even though the locally unstable direction is
balanced by the stable direction such that the divergence is zero,
the greater local instability may be one of the reasons why the
period-one solutions become orbitally unstable with increasing β .
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Fig. 5. Eigenvalues, λ, of the Jacobian of F(s(t)). There is a pair of purely real eigenvalues with the same magnitude, and a pair of purely imaginary eigenvalues with the
samemagnitude. For each pair, one eigenvalue is the negative of the other. Dependence of the eigenvalues while varying foot to hip mass ratio, β , (left), and slope, γ , (right).
Increasing the slope (γ ) caused the magnitude of the real
eigenvalues to decrease at the beginning and end of swing phase
and did not affect the maximum, thus decreasing the average
magnitude. For the imaginary components, increasing γ led to
decreases at the beginning and end, and an increase in the
maximum, which occurred just before 50% of the gait cycle. The
net effect on the imaginary components was a decrease in their
average magnitude.
Although the divergence rates for each eigenvector direction

are uncoupled, this transformation does not take into account the
evolution of the underlying periodic orbit. For instance, consider
a system where the only eigenvalue that was locally unstable
corresponded to an eigenvector direction that was tangent to
evolution of the periodic orbit. This local instability would not
affect the stability of the walking process; it would simply result
in a phase shift. Thus, a convenient reference frame is obtained
by rotating to a frame that remains tangent and orthogonal to
the equilibrium solution (Fig. 3). Transforming perturbations from
the global state basis, δ(t), to this local frame which varies along
the solution, δ′(t), may be accomplished through a time-varying
unitary rotation matrix, U|seq(t),

δ′ (t) = U|seq(t) · δ (t) (13)

where the evolution of δ′(t) is governed by

δ̇
′

(t) =
(
U · DsF · U−1 +

dU
dt
· U−1

)∣∣∣∣
seq(t)
· δ′ (t)

= B (t) δ′ (t)

=

 λττ (t) λτη1 (t) · · ·

λη1τ (t) λη1η1 (t) · · ·
...

...
. . .

 δ′ (t) (14)

where B(t) is the stability matrix in this locally rotating frame
and the subscripts on λ denote the tangent, τ , and normal, η,
directions that make up the rotating frame. The first row of the
U matrix is the unit tangent vector, F(s(t))T · ‖F(s(t))‖−1. The
remaining rows are unit vectors orthogonal to the tangent vector.
There is not a unique set of these orthogonal vectors, as they may
be any combination of vectors that form an orthogonal basis in the
hypersurface orthogonal to the tangent, Γ (t). This transformation
results in the λητ (t) terms being zero. Thus, a tangent perturbation
remains tangent and is uncoupled from the normal directions. The
instantaneous rate of expansion of a disturbance volume in Γ (t) is
unique and is given by, div F(s(t)) − λττ . This rate of expansion
is a measure of the rate of divergence of trajectories in Γ (t). It
is important to note that since U is a unitary rotation matrix, the
matrix dUdt · U

−1 is skew-symmetric and therefore traceless. This
implies that trace (B(t)) = trace(DsF) and therefore he volume
divergence rate about a point in state space is independent of
the transformation U, i.e., div F(s(t)) =

∑
λi = trace(DsF) =

trace(B(t)). This also provides a means to numerically check the
B(t)matrix. The analytical solution to λττ is,

λττ =
ṡT · DsF · ṡ

ṡT · ṡ
. (15)

The rate of divergence of trajectories in Γ (t) is presented in
Fig. 6 for varying mass ratios, β , and slopes, γ . Additionally, since
the tangent direction is nowuncoupled from thenormal directions,
it is possible to look just at the eigenvalues of a reduced matrix
that describes evolution of the normal perturbations. This reduced
matrix is formed by removing the first column and top row of the B
matrix. Similar to how the n eigenvalues of the Jacobian of Fmay
be examined to determine local stability in the global state-space,
examining the (n − 1) eigenvalues of this reduced matrix may be
used to determine local stability in this orthogonal hypersurface,
Γ (t), Fig. 6. This is ultimately the frame we are interested in using
to study stability of walking.
When β is zero, stability in the orthogonal hypersurface differs

fromphysically plausible foot to hipmass ratios,β > 0 (Fig. 6). This
difference is due to the uncoupling of the swing-footmomenta and
gravity terms from the dynamics describing the stance-leg angle,
θ . For a given mass ratio, however, increasing the slope does not
have a large effect on the qualitative behavior of the stability in the
orthogonal hypersurface for period-one solutions. When the slope
actually is too steep (γ = 0.015) and the period-one solution is no
longer stable (Fig. 4), the stability in the orthogonal hypersurface
does not appear to be significantly different than that of the stable
period-one solutions.

3.4. Local dynamic stability of foot strike event

Up to this point, local stability has beenpresented for the swing-
phase. Swing-phase dynamics are smooth-continuous functions
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Fig. 6. Divergence in the orthogonal hypersurface, div F(s(t)) − λττ = −λττ , while varying foot to hip mass ratio, β , for slope γ = 0.003 (left), and varying slope, γ , for
mass ratio β = 0.02 (right) is shown in the top graphs. The middle and lower graphs are the real parts of the three eigenvalues of the reduced Bmatrix. These eigenvalues
capture evolution of perturbations in the rotating orthogonal hypersurface, Γ (t). The thick lines in the middle graphs indicate a complex conjugate pair of eigenvalues. The
break in the middle of the graph on the left shows how increasing β causes the complex conjugate pair of eigenvalues to transition to three eigenvalues with only real
elements (in the bottom figure on the left). Generalized behavior for the numbered regions identified in the right graph are diagramed in Fig. 7.
with respect to time. Impact dynamics of the foot-strike event
occur over an infinitesimal amount of time and are not smooth. To
determine how the foot-strike event affects a disturbance volume
in the state-space, we track a perturbed foot-strike state, s− +
δ−. The foot-strike equations are of the form s+ = G

(
s−
)
, and

t+ = t−. Substituting a perturbed foot-strike state into Eq. (4) and
retaining terms only to first-order in the disturbance,

s+ + δ+ = G
(
s− + δ−

)
= G

(
s−
)
+ DsG

(
s−
)
δ−

= s+ +


1 −1 0 0
0 −1 0 0

0
∂G3
∂φ

cosφ
1+ β sin2 φ

cosφ (1− cosφ)
1+ β sin2 φ

0 0 0 0

 δ− (16)

where G3 is the third element of the G
(
s−
)
vector from Eq. (4).

Thus, we are left with the relationship between the pre to post
foot-strike perturbations as the Jacobian of the foot-strike map,
DsG

(
s−
)
,

δ+ = DsG
(
s−
)
δ−. (17)

Since this event is discrete, it causes an instantaneous change in
the state-space volume perturbations occupy, not a rate of volume
change like in the continuous dynamics. The ratio of volume after
the event compared to volume before the event is related to the
absolute value of the determinant of the Jacobian of G,

DIV G (s) = |det (DsG)| = |Λ1Λ2 · · ·Λn| (18)

where Λi are the eigenvalues of the Jacobian of G. If this ratio is
less than unity, then the discrete event G causes a contraction of
perturbation volume.
The eigenvalues,Λ, of the Jacobian of G are

Λ =

[
−1, 1,

cosφ
1+ β sin2 φ

, 0
]
. (19)
Fig. 7. Schematic of divergence in Γ (t), the hypersurface orthogonal to the
trajectory, for the regions identified in Fig. 6. Green (or light gray) arrows are
attracting and red (or dark gray) indicate divergence.

Similar to examining the magnitude of the eigenvalues of the
estimated Jacobian of the Poincaré map, we may gain understand-
ing of how the foot-strike event affects perturbation magnitude by
examining these eigenvalues. The first two eigenvalues with unity
magnitude correspond to the fact that the foot-strike event has no
effect on perturbations to the stance and inter-leg angles. Themag-
nitude of the third eigenvalue is always less than one for realis-
tic inter-leg angles at the foot-strike event, i.e. φ 6= 0. This third
eigenvalue corresponds to dissipation of perturbations to the hip-
momentum, pθ , at foot-strike. The zero eigenvalue is related to the
fact that swing phase momentum is always forced to zero post-
foot-strike.
Using themap described in Eq. (7),Ξ, it is possible to restrict the

Jacobian of G to the two perturbation vectors in Σ. This provides
insight into the effect G has on perturbations, since the rank of G is
only two, and the zero eigenvalue causes DIV G(s) to be zero. The
eigenvalues and DIV of this reduced 2 by 2 matrix are,

Λ2×2 =

[
−1,

cosφ
1+ β sin2 φ

]
and

DIV G (s)2×2 =
| cosφ|

1+ β sin2 φ
. (20)

As pointed out by Garcia et al., there are slopes, and for this
model, mass ratios, where dissipation occurs at foot-strike, but
walking motions are unstable [7]. Thus, dissipation at foot-strike
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does not guarantee orbital stability [3,7]. Dissipation at foot-strike,
however, is required for existence of orbitally stable solutions
for this hybrid continuous-discrete system. Since all swing phase
solutions considered are locally (and orbitally) unstable, the
discrete dynamics of the foot-strike event are the way solutions
to the hybrid system become orbitally stable.

3.5. Equating local and orbital stability

To improve the understanding of the relationship between
local and orbital stability, we calculate orbital stability for the
hybrid continuous-discrete system from local stability measures.
We borrow from Floquet theory for continuous periodic solutions,
and extend the method to handle the walker dynamics, which
include both a continuous swing-phase and a discrete foot-strike
event. We first examine the continuous swing-phase dynamics.
For a period-one walking solution with period T , an arbitrary
perturbation at the beginning of swing (post-foot-strike) evolves to
a perturbation at the end of swing (pre-foot-strike) by integrating
the localized Jacobian, Eq. (10), along the equilibrium solution to
yield an n by nmap, ΦF (T ),

Φ̇F (t) = JF|seq(t)ΦF (t) and ΦF (0) = I. (21)

This map, the state transition matrix (or fundamental matrix)
ΦF (T ), maps initial to final perturbations over the swing-phase
dynamics in the original Hamiltonian coordinate frame,

δ (T ) = ΦF (T ) δ (0) . (22)

Swing-phase ends only when the foot strikes the ground,
φ − 2θ = 0. This must also hold for any perturbed solution,(
φ + δφ

)
− 2 (θ + δθ ) = 0, thus, δφ − 2δθ = 0. In integrating

Eq. (22), however, we have not imposed δφ − 2δθ = 0 at foot-
strike (t = T ). Furthermore, the stability of the orbital solution is
independent of the amount that a perturbation simply advances or
retards the solution in the tangent direction, i.e. phase-shift. These
two observations may be accounted for by forming the following
matrix, R,

R = I−
F
(
s−
)
· n̂TΣ

F (s−)T · n̂Σ

(23)

where I is the identitymatrix, F(s−) is the column n-vector tangent
to the trajectory at s−, and n̂Σ is a column n-vector normal to
the Poincaré section, Σ [15]. We note that the Poincaré section
and the hypersurface orthogonal to the tangent at foot-strike,
Γ (T ), are only the same in the case that the tangent vector is
orthogonal to the Poincaré section. The matrix R is used to discard
the evolution of perturbations in the tangent direction and retain
only perturbation evolution in the three-dimensional Poincaré
section,

Φ̂F (T ) = R · ΦF (T ) . (24)

The matrix Φ̂F (T ) maps perturbations from the beginning to
the end of the continuous swing-phase dynamics in the original
position-momenta coordinate frame keeping only perturbations in
Σ. To complete the orbit we need to apply the map for the foot-
strike event from Eq. (17). Thus, the map from beginning of swing-
phase for step i to the beginning of swing-phase for step i+ 1 is,

Ψ = DsG|s− · Φ̂F (T ) . (25)

The matrix Ψ is the Jacobian of the Poincaré map for step i
to i + 1 and should be very similar to the numerical estimate
of the Jacobian of the Poincaré map DsP|seq from Eq. (8). Orbital
stability is determined from the eigenvalues of Ψ . This method
for determining the Jacobian of the Poincaré map has the
Fig. 8. The two-dimensional Poincaré sectionΣ at post-foot-strike states (p+φ = 0)
showing successful initial conditions for walking, which may also be thought of as
the basin of attraction for the fixed point, seq . The slope, γ , was 0.003 radians and
themass ratio,β , was 0.02. All other initial conditions resulted in thewalker ‘‘falling
over’’, i.e., the hip strikes the ground, or returning to the vertical standing posture
(a static equilibrium point).

advantage that it is more robust to numerical error, because
it avoids the problems associated with using small numerical
perturbations [15].
We note that this procedure may also be applied when the

solution is not periodic, and may be used to estimate Lyapunov
exponents for systems that include continuous dynamics coupled
with a discrete event applied at intersection with a Poincaré
surface.
It is important to note that the local and orbital stability

measures given here are only valid within an infinitesimal
neighborhood of the fixed point. To examine the limits of nonlinear
stability, in other words, the basin of attraction or passive recovery
around the fixedpoint,wenumerically explored the 2-dimensional
space at the instant post-foot-strike by computing the solution
from initial conditions in the regionφ ∈ (0, π) and pθ ∈ (0,−1.5).
Initial conditions that yielded solutions that returned to the fixed
point, i.e. the basin of attraction, are shown as light-blue points
in Fig. 8. There are two interesting observations. First, the basin
of attraction is not constrained to a constant Hamiltonian energy.
Second, although it appears that this region is discontinuous, we
believe that it is only due to our discrete sampling precision.
We chose to not sample higher, simply because our intent was
to provide a qualitative image of the basin of attraction for the
walking model. For more details on the basin of attraction for the
simplest walking model, refer to [16].

4. Discussion

The passive walking cycle of the 2D walker demonstrates that
stable walking motions are possible without active feedback con-
trol (neural or otherwise), and arise simply from the mechanical
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properties of the system. Robotics researchers are currently try-
ing to exploit this self-stabilization behavior seen in biology and
some numerical models to design robots that require less energy
to maintain stability [8,17]. For the 2D walker, examining local
stability in the global state-basis resulted in an unstable direc-
tion throughout all of swing phase (Fig. 5). Using a time-varying
rotation matrix, however, it is possible to uncouple the effects
of perturbations that are tangent to the walking trajectory from
evolution of the orthogonal directions. This is important because
tangential perturbations only affect phase, i.e., they shift the so-
lution along the unperturbed trajectory. Since tangential pertur-
bations do not cause the solution to leave the unperturbed trajec-
tory, they are not a concernwhen considering if a perturbationwill
result in the solution leaving the basin of attraction. In the case of
the 2D walker where only one stable trajectory exists for a given
parameter set, leaving the basin of attraction will result in the
model falling over or converging on the steady state solution of
standing. Only perturbations orthogonal to the periodic gait tra-
jectory have the potential to cause the solution to leave the basin
of attraction.
It is important to note that in contrast to the simple model

explored here, in actual animal locomotion, perturbations along
the trajectorymay indeed affect the stability of a periodic gait. One
hypothesis holds that periodic gaits are maintained via reference
trajectory tracking, in which neural controllers command limbs to
follow prescribed paths and sensory feedback activates muscles to
maintain them [18]. Reference trackers seek to maintain a fixed
phase relation of animal position with respect to the reference
trajectory. Thus, perturbations away from the reference trajectory
are countered not merely by convergence to any state-space
point along the reference trajectory, but must converge to the
cyclically moving reference point along the reference trajectory,
i.e., converge to the correct phase in the gait cycle. Ignoring
perturbations along the gait cycle would not be appropriate for
such a system, but at this time it is not clear that animal locomotion
operates by reference tracking, or some other process.
Nonetheless, understanding local stability has important impli-

cations in the design of controllers for bipedal locomotion. If a re-
gion in state-space along the gait cycle trajectory is locally stable,
it may not be necessary for a controller to correct deviations – thus
reducing the energy required tomaintain stability. In regions of the
state space where there are some directions that are locally sta-
ble, and some that are unstable, a control scheme could be devised
that gives priority to correcting deviations in the unstable direc-
tions. In other words, a form of hierarchical control that applies
control forces only when necessary would be advantageous over a
system that attempts to control the trajectory everywhere in the
state space.
In the biomechanics field, these techniques may be useful in

understanding how our neuromuscular reflexes and the nonlinear
behavior of our musculoskeletal system (i.e., preflexes) contribute
to stability maintenance during walking and more general motor
control.
Two other techniques for investigating stability of walking

models that are complementary to the local stability analysis, are
the basin of attraction, and the gait sensitivity norm. The basin
of attraction is the set of all possible states that will converge to
the nominal walking cycle [16]. Computing the basin of attraction
is computationally expensive, and it is difficult to relate to real
world disturbance rejection [10,19]. The gait sensitivity norm
was recently introduced for measuring stability and has been
demonstrated in actual robotics development. It quantifies how
a set of disturbances affect a set of gait indictors. The choice of
disturbances and gait indicators is left up to the designer. As an
example, Hobbelen, et al. [10], varied a control parameter in a
physical robot and calculated the gait sensitivity norm for how the
robot would respond to varying floor height.
One of the limitations of analyzing stability in the rotating
orthogonal hypersurface is that the eigenvalues of the reduced
B matrix depend on the choice of generalized coordinates, even
when the equations are expressed in canonical Hamiltonian form.
It may be possible, however, to take advantage of this limitation by
searching for a set of generalized coordinates that would achieve
an additional goal, such as minimizing controller complexity.
We also presented how orbital stability may be calculated from

the local measures for models that include both continuous and
discrete dynamics. The advantage to calculating orbital stability
in this semi-analytical manner is that it avoids numerical errors
associated with using numerical perturbations to estimate the
Jacobian of the Poincaré map.
In summary, we have presented techniques for studying the

stability of walking models. The walking model showed that
even though there are walking cycles that are stable overall,
these cycles have regions during the continuous swing phase
where perturbations will tend to diverge in the short-term
(local instability). Thus, even though the complete continuous-
discrete hybrid walking cycle may exhibit overall orbital stability,
appropriately timed perturbations to the trajectory while it is
in a region of local instability may cause the trajectory to leave
the basin of attraction of the walking cycle, leading to a fall.
Understanding local stability will therefore be useful for both
designing controllers for legged robots, and studying how the
neuromuscular system maintains stability.
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