
Detecting and exploiting chaotic transport in
mechanical systems

Shane D. Ross and Phanindra Tallapragada

Abstract Several geometric and probabilistic methods for studying chaotic phase
space transport have been developed and fruitfully applied to diverse areas from
orbital mechanics to biomechanics to fluid mechanics and beyond. Increasingly,
systems of interest are determined not by analytically defined model systems, but
by data from experiments or large-scale simulations. We will discuss those features
of phase space transport in finite-time systems which seem to be robust, considering
invariant manifolds and invariant manifold-like objects, and their connection with
concepts such as symbolic dynamics, chaos, almost-invariant sets, and coherent sets.
We end with an application to efficient movement of weakly propelled vehicles in
fluid flows.

1 Introduction

Several geometric and probabilistic methods for studying chaotic phase space trans-
port have been developed and fruitfully applied to diverse areas from orbital me-
chanics, chemistry, biomechanics to fluid mechanics and beyond [1–31]. There is
much interest in understanding how chaos arises in dynamical systems, how to de-
tect it, how to exploit it when it is present, and how to design for (or against) it
[32]. Increasingly, systems of interest are determined not by analytically defined
model systems, but by data from experiments or large-scale simulations from many
areas of the physical sciences, including atomic physics [4], geophysical fluid dy-
namics [33–37], musculoskeletal biomechanics [38–45], and space mission design
[1, 46–51]. We will discuss those features of chaotic phase space transport in finite-
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time, non-autonomous systems which seem to be robust, considering invariant man-
ifolds and invariant manifold-like objects, and their connection with concepts such
as symbolic dynamics [1], braids [52–55], chaos, almost-invariant sets [18, 56], and
coherent sets [22].

These methods fall into two main categories, the geometric and the probabilistic.
Under the umbrella of geometric methods are the techniques of invariant manifolds
(of fixed points or larger invariant sets) [1–4, 57], lobe dynamics [18, 37, 58, 59],
finite-time Lyapunov exponents (FTLE) and Lagrangian coherent structures (LCS)
[35, 60–65]. The method of FTLE-LCS has proven to be particularly useful in study-
ing transport in time-dependent systems and has found a variety of applications
[25–30]. The probabilistic approach studies the transport of densities and measures
and the so-called almost invariant sets (AISs) and coherent sets. These methods too
have been successfully applied in the study of various geophysical flow problems
[22] and mixing in microchannels [31].

The development of the above two methods to non-autonomous settings has oc-
curred almost simultaneously in the last decade. The geometric methods, particu-
larly FTLE-LCS, study stretching and contraction around reference trajectories and
identify transport barriers. The FTLE-LCS method is therefore a local method; it
provides local transport information from which one attempts to infer the global
transport properties of the system. The probabilistic method, on the other hand, ig-
nores the local transport structures, but using the transfer operator divides the phase
space into maximally invariant sets.

One engineering application we consider is the determination of optimal routes
for weakly propelled immersed in complex environmental fluid flows, by develop-
ing control schemes which explicitly incorporate the geometry of the dynamical
structures which organize the flow. We consider the methods we describe as a step-
ping stone to a formal linking between the theory of chaotic transport and optimal
control.

2 Computing Chaotic Transport

The theory of transport in phase space is a unified mathematical description of dy-
namical processes that can be applied to a wide range of physical phenomena across
many scales. A geometric picture describing transport is emerging for time-chaotic
(aperiodic) flow fields [1–3, 18, 28, 41, 47–50, 66–75]. The key is to partition the
phase space into subsets and then to identify how phase points travel within and
between the subsets [18]. In time-periodic systems, the stable and unstable mani-
folds of normally hyperbolic invariant manifolds (NHIMs) [1, 2, 76]—e.g., fixed
points, periodic orbits, or other bound sets or orbits—provide the co-dimension one
separatrices.
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Fig. 1 The manifold M is
partitioned into the regions
Ri, i = 1, . . . ,NR. If points
are distributed uniformly
over M at t = 0, we want to
compute the movement of
points between these regions
for all times t > 0.
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2.1 Transport Between Regions in Phase Space

To make the description of phase space transport more precise, consider the follow-
ing. Suppose we have a volume- and orientation-preserving map f : M ! M (e.g.,
a time-T (stroboscopic) map f t+T

t or a Poincaré map resulting from a continuous
time dynamical system) on some compact set M ⇢ Rn with volume-measure µ and
we seek a suitable (i.e. depending on the application in mind) partition of M into
compact regions of interest Ri, i = 1, . . . ,NR, as shown schematically in Fig. 1, such
that

M =
NR[

i=1
Ri and µ(Ri

\
R j) = 0 for i 6= j. (1)

Furthermore, we are interested in the following questions concerning the transport
between the regions Ri (see [77]): In order to keep track of the initial condition of a
point as it moves throughout the regions, we say that initially (i.e., at t = 0) region
Ri is uniformly covered with species Si. Thus, the species type of a point indicates
the region in which it was located initially. Then we can generally state the transport
problem as follows.

Describe the distribution of species Si, i = 1, . . . ,NR, throughout the regions R j,
j = 1, . . . ,NR, for any time t = n > 0.

The quantity we want to compute is Ti, j(n) ⌘ the total amount of species Si
contained in region R j immediately after the n-th iterate.

The flux ai, j(n) of species Si into region R j on the n-th iterate is the change in
the amount of species Si in R j on iteration n; namely, ai, j(n) = Ti, j(n)�Ti, j(n�1).
Since f is assumed volume-preserving, the flux is equal to the amount of species
Si entering region R j at iteration n minus the amount of species Si leaving R j at
iteration n.

Our goal is to determine Ti, j(n), i, j = 1, . . . ,NR for all n. Note, that Ti,i(0) =
µ(Ri), and Ti, j(0) = 0 for i 6= j. In the following we briefly describe the theoretical
background behind the two computational approaches to the transport problem.
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Fig. 2 (a) Pieces of the local unstable and stable manifolds, W u(pi) (red) and W s(pi) (green) of
saddle fixed points {pi}. (b) When the manifolds W u(pi) and W s(pi) are followed out on a global
scale, they often intersect in primary intersection points {qi}. These intersections allow one to
define boundaries betweens regions {Ri}.

2.2 Lobe Dynamics

Lobe dynamics theory has been developed for the case n = 2 [58] and states that
the two-dimensional phase space M of the map f can be divided as outlined above
(see eq. (1)). We define a region to be a connected subset of M with boundaries
consisting of parts of the boundary of M (which may be at infinity) and/or segments
of stable and unstable invariant manifolds of saddle-type hyperbolic fixed points,
pi, i = 1, ...,N, as shown schematically in Fig. 2(a). When the manifolds W u(pi)
and W s(pi) are followed out on a global scale, they often intersect in primary in-
tersection points {qi}. These intersections allow one to define boundaries betweens
regions {Ri}, as illustrated in Fig. 2(b). Moreover, the transport between regions
of phase space can be completely described by the dynamical evolution of small
subregions of phase space, “lobes” enclosed by segments of the stable and unstable
manifolds as defined below.

Boundaries, Regions, Pips, Lobes, and Turnstiles Defined. In order to define a
boundary between regions, we must first define a primary intersection point, or pip.
Consider just two saddle points, pi and p j. Suppose W u(pi) and W s(p j) intersect
transversally at least once, i.e., W u(pi)

T
W s(p j) 6= /0. Then by the definition of sta-

ble and unstable manifolds, they must intersect an infinite number of times. Consider
just two of these intersection points, q and q̄, as in Fig. 3. An intersection point r is
a pip if U [pi,r] intersects S[r, p j] only at the point r, where U [pi,r] and S[r, p j] are
segments of the unstable and stable manifolds, W u(pi) and W s(p j), respectively. In
Fig. 3, q is a pip, but q̄ is not a pip. The union of segments of the unstable and stable
manifolds, which terminate in a pip, naturally form boundaries between regions.
Considering Fig. 3(b), define B ⌘U [pi,q]

S
S[p j,q] as the boundary between “two

sides”, the regions R1 and R2. Note that we could have pi = p j.
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Let q0,q1 2W u(pi)
T

W s(p j) be two adjacent pips, as in Fig. 4(a), i.e., there
are no other pips on U [q0,q1] and S[q0,q1], the segments of W u(pi) and W s(p j)
connecting q0 and q1. We refer to the region interior (int) to U [q0,q1]

S
S[q0,q1]

as a lobe. Now consider again a pip q, as in Fig. 4(b). Since q is a pip, f�1(q)
is also a pip; both are part of the heteroclinic orbit passing through q, hq =
{. . . , f�2(q), f�1(q),q, f 1(q), f 2(q), . . .} asymptotically going from pi to p j, i.e.,
f�n(q)! pi and f n(q)! p j as n! •. As f is orientation-preserving, there is at
least one pip on U [ f�1(q),q] where the W u(pi),W s(p j) intersection is topologi-
cally transverse. Let us assume there is only one such pip, called q1, as illustrated
in Fig. 4(b); it belongs to a distinct heteroclinic orbit hq1 6= hq connecting pi and
p j. Then S[ f�1(q),q]

S
U [ f�1(q),q], highlighted in Fig. 4(c), forms the boundary

of precisely two lobes; one in R1,

L1,2(1)⌘ int(U [ f�1(q),q1]
[

S[ f�1(q),q1]) (2)

and the other in R2,
L2,1(1)⌘ int(U [q1,q]

[
S[q1,q]). (3)

Under one iteration of f , the only points that can move from R1 into R2 by cross-
ing B are those in L1,2(1). The amount of phase space transported is µ(L1,2(1).
Similarly, under one iteration of f the only points that can move from R2 into R1
by crossing B are those in L2,1(1), where µ(L2,1(1) = µ(L1,2(1); see Fig. 4(d). In
some cases, µ(L1,2(1) can be computed from sums of action differences between
the heteroclinic orbits hq and hq1 [78].

The two lobes L1,2(1) and L2,1(1) are called a turnstile [79] and individually
they are turnstile lobes. The essence of lobe dynamics can be stated as follows:
the dynamics associated with crossing B is reduced to the dynamics of the turnstile
lobes associated with B.

These results generalize to the boundary between any two sets Ri and R j. We
have chosen our notation such that Li, j(m), m � 2 denotes the lobe that leaves Ri
and enters R j on the m-th iterate, so that Li, j(m) = f 1�m(Li, j(1)). It is important to
note that Li, j(m), m� 2, need not be contained entirely in Ri, and f n(Li, j(1)), n� 2,

q
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pj

W 
u(pi)

W 
s(pj)

q-

pi
pj

q

R1

R2

B = U [pi ,q] U S [q,pj]

(a) (b)

Fig. 3 (a) q is a primary intersection point (pip), while q̄ is not. (b) Suppose q 2W u(pi)
T

W s(p j)
is a pip. We define B⌘U [pi,q]

S
S[q, p j] as a boundary between “two sides,” R1 and R2.
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Fig. 4 (a) The region interior to U [q0,q1]
S

S[q0,q1] is a lobe. (b) If q is a pip, so is f�1(q).
Also, since f is orientation-preserving there is at least one pip, e.g., q1, in U [ f�1(q),q] where the
W u(pi),W s(p j) intersection is topologically transverse. (c) U [ f�1(q),q]

S
S[ f�1(q),q] forms the

boundary of precisely two lobes; one in R1, labeled L1,2(1), and the other in R2, labeled, L2,1(1).
(d) Under one iteration of f , only points in L1,2(1) can move from R1 into R2 by crossing B; and
similarly for points in L2,1(1). The two lobes L1,2(1) and L2,1(1) are called a turnstile.

need not be contained entirely in R j, i.e., the lobes can leave and re-enter regions
with strong implications for the dynamics.

We can consider the lobes as prototypes of ‘mobile’ subregions, ‘atoms’ of phase
space transport, whose images and pre-images under f will visit several regions. As
an alternative notation, we can label these subregions based on their itineraries—that
is, their past, present, and future whereabouts with respect to the regions {Ri}. For
example, we can label L1,2(1) as ([R1],R2), where the bracketed region is the current
region, and under one iterations of f , the pre-image will be entirely contained in
R2; thus, f ([R1],R2) = (R1, [R2]). As in Fig. 5, itinerary labels of subregions can
be naturally concatenated according to the labels of their corresponding intersected
subregions. With this notation, we can label subregions with complicated itineraries,
e.g., (R2,R3, [R2],R1,R5), where longer itineraries will belong to smaller regions of
phase space. In a later section, we will use these subregion itinerary labels to go
between distant regions of the phase space using small controls, e.g., going from
region R4 to region R1 in the schematic illustration of Fig. 6.

Multilobe, Self-Intersecting Turnstiles. Before going further, some comments re-
garding technical points are in order [58]. Above we assumed that there was only
one pip between q and f�1(q), but this is not the case in all applications. Suppose
that there are k pips, k� 1, along U [ f�1(q),q] besides q and f�1(q). This gives rise
to k +1 lobes; m in R2 and (k +1)�m in R1. Suppose



Detecting and exploiting chaotic transport in mechanical systems 7

 

(a) (b) (c)

Fig. 5 Consider an example with several regions {R1,R2,R3,R4,R5}, where we seek to label
lobe intersections accordingly. (a) Consider two intersecting lobes ([R2],R1) and (R3, [R2],R1). (b)
Zooming-in, denote the intersection (R3, [R2])

T
([R2],R1) by (R3, [R2],R1). (c) Longer itineraries

correspond to smaller pieces of phase space.

Fig. 6 The same regions
as given in Fig. 2(b) are
redrawn, this time extend-
ing some of the manifolds
further to highlight the inter-
section of manifolds which
bounds the subregion with
itinerary (R4,R4,R1, [R1],R2).
The image of this subre-
gion under the map is B, i.e.,
B = f (R4,R4,R1, [R1],R2) =
(R4,R4,R1,R1, [R2]),
while A =
f�3(R4,R4,R1, [R1],R2) =
([R4],R4,R1,R1,R2).

R1

R5

R4

R3

R2

q2

q1
q4
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L0,L1, · · · ,Lk�m ⇢ R1,

Lk�m+1,Lk�m+2, · · · ,Lk ⇢ R2.

Then we define

L1,2(1) ⌘ L0
[

L1
[

· · ·
[

Lk�m,

L2,1(1) ⌘ Lk�m+1
[

Lk�m+2
[

· · ·
[

Lk,

and all the previous results hold.
An example of a multilobe turnstile comes from the study of orbits around ro-

tating distended asteroids. Using the planar restricted full two-body problem as a
model (details provided in [71]), we can consider the trajectories of particles at a
constant Hamiltonian energy, viewed on a 2D Poincaré surface-of-section. Particles
can be ejected from the system (out to infinity) or captured into the system (from
infinity). The phase space structure governing these phenomena is a homoclinic tan-
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gle associated with stable and unstable manifolds of a fixed point at infinity. Using
(r, pr) as coordinates along the surface-of-section, where r is the distance from the
center of the asteroid and pr is its conjugate momentum, this point is at p = (•,0).
As shown in Fig. 7, the resulting homoclinic tangle has is a multilobe turnstile with
k = 3 and m = 2.

Fig. 7 An example of a mul-
tilobe turnstile with k = 3,
m = 2. The system is the mo-
tion of a particle (e.g., ejecta)
in the field of a rotating
asteroid and is a Hamilto-
nian system. The coordinates
shown here are (r, pr), where
r is the distance from the cen-
ter of the asteroid and pr is its
conjugate momentum.

R1
q

R2

W u(p)+

W s(p)+

f -1(q)

q1
q2

q3

f (q)

f (q1) f (q2) f (q3)

Furthermore, we previously assumed that L1,2(1) and L2,1(1) lie entirely in R1
and R2, respectively. But L1,2(1) may intersect L2,1(1), as shown schematically in
Fig. 11(a) for the case of a homoclinic tangle. We want U [ f�1(q),q] and S[ f�1(q),q]
to intersect only in pips, so we must redefine our lobes, as shown in Fig. 11(b). Let

I = int
⇣

L1,2(1)
\

L2,1(1)
⌘

.

The lobes defining the turnstile are redefined as

L̃1,2(1) ⌘ L1,2(1)� I,

L̃2,1(1) ⌘ L2,1(1)� I, (4)

and all our previous results hold. We note that multilobe, self-intersecting turnstiles
[18] do indeed appear in physical systems, and may be a geometric phase space
‘constraint’ which has a significant impact on the dynamics.

Expressions for the Transport of Species. Complicated transport properties can
result from lobe dynamics (cf. [1, 58, 59, 78, 80]). Using the lobe dynamics frame-
work, the transport of species between the regions—Ti, j(n)—can be computed via
the following formulas.

Let Lk
i, j(m)⌘ Li, j(m)

T
Rk denote the portion of lobe Li, j(m) that is in the region

Rk. Then

Ti, j(n)�Ti, j(n�1) =
2

Â
k=1

[µ(Li
k, j(n))�µ(Li

j,k(n))] (5)
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where

µ(Li
k, j(n)) =

2

Â
s=1

n�1

Â
m=0

µ
⇣

Lk, j(1)
\

f m(Li,s(1))
⌘

�
2

Â
s=1

n�1

Â
m=1

µ
⇣

Lk, j(1)
\

f m(Ls,i(1))
⌘

. (6)

Thus, the dynamics associated with crossing a boundary B is reduced completely
to a study of the dynamics of the turnstile lobes associated with B. The amount of
computation necessary to obtain all the Ti, j(n) can be reduced due to conservation
of area and species, as well as symmetries of the map f . In some cases, one can
obtain A typical species transport calculation result is given in Fig. 9 where only
two regions are considered. Notice that after only a few iterates of the map, a high
degree of filamentation is seen.

2.3 Finite-Time Analogs of Invariant Manifolds

The method described above works for systems described by autonomous or time-
periodic flow fields. However, time-chaotic flow fields do not, in general, have fixed
points or periodic orbits. In this case, co-dimension one surfaces of high hyperbol-
icity play a role analogous to the stable and unstable manifolds of NHIMs, delin-
eating the boundaries between dynamically distinct regions and identifying lanes

R1
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L1,2(1)

f (L1,2(1))

f (L2,1(1))

p

q
f -1(q) f (q)

R2

q1

q2

q3 f (q1)

f (q2)

f (q3)

I = L1,2(1)    L2,1(1)
U

W u(p)+ W s(p)+

R1

L2,1(1)

L1,2(1)

f (L1,2(1))

f (L2,1(1))

p

q
f -1(q) f (q)

R2

~

~ ~

~

(a) (b)

Fig. 8 A multilobe, self-intersecting turnstile. (a) The stable and unstable manifolds of the un-
stable fixed point p intersect in such a way that there are three pips between q and f�1(q), but
our naively defined turnstile “lobes” have a non-empty intersection I = int(L1,2(1)

T
L2,1(1)) 6= /0.

(b) When we redefine the turnstile lobes such that L̃1,2(1)⌘ L1,2(1)� I and L̃2,1(1)⌘ L2,1(1)� I,
the result is a multilobe, self-intersecting turnstile consisting of a sequence of six regions; three
defining L̃1,2(1) and three others defining L̃2,1(1).
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Fig. 9 (upper panels) The two regions at time n = 0 define the two species (upper left); S1 is dark,
S2 is white. Several iterates of S1 are shown, namely n = 1,2,3,5,7. (lower panel) The flux and
total transport of species S1 into region R2 are shown as a function of iterate. The (vertical) phase
space scale is relative. The example shown here comes from celestial mechanics, specifically the
planar circular restricted three-body problem. The 2D state space here is from a Poincaré surface-
of-section restricted to a constant energy surface.

of transport. Computations of these surfaces have proven valuable for the analysis
of geophysical transport (see Fig. 10). These finite-time hyperbolic manifolds, or
Lagrangian coherent structures (LCS) [60, 81], can be obtained from ridges in the
time-varying finite-time Lyapunov exponent (FTLE) field [28, 44, 81, 82].

FTLE Definition. For a flow field defined by data sets or a set of ordinary dif-
ferential equations on a possibly non-Euclidean (i.e., curved) manifold, we define
the flow map as f t

t0 : x(t0) 7! x(t), which maps phase space points (or particles)
from their initial location at time t0 to their location at time t. We may be inter-
ested in FTLE and LCS on curved manifolds, e.g., where geophysical flows live,
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Fig. 10 (Left) Atmospheric LCS for days surrounding the Antarctic polar vortex splitting event of
September 2002 (based on NCEP/NCAR reanalysis data using T =±8 days); attracting (repelling)
curves, analogous to unstable (stable) manifolds of saddle points, are shown in blue (red). Before
and after the splitting event in late September, we see an isolated blob of air, bounded by LCS
curves, slowly rotating over Antarctica. The vortex pinches off, sending the northwestern part of
the ozone hole off into the midlatitudes while the southwestern portion goes back to its regular
position over Antarctica. Note the formation of lobes at the edges where chaotic stirring occurs
across the LCS. (Right) The corresponding daily ozone concentration (based on NASA TOMS
satellite data). The time-varying LCS structures that bound the ozone hole fragments provide a
framework for understanding the atmospheric transport. The system can be said to have undergone
a ‘Duffing bifurcation’ given its gross similarity to a Duffing oscillator passing through a critical
parameter value.

due to sphericity of the Earth or boundary topography, or to handle curved phase
spaces which naturally arise in mechanics, such as T SO(3) or T SE(3). We define
the FTLE s(x, t0, t) as the norm of the differential of the flow map f t

t0 at the initial
point x, i.e.,

s(x, t0, t) =
1

|t� t0|
log
��Df t

t0

��⌘ 1
|t� t0|

log

 
max
y6=0

��Df t
t0(y)

��

kyk

!
, (7)

where y is a small perturbation in the tangent space at x [28]. One can use the expres-
sion above on non-Euclidean manifolds and to derive an algorithm for computing
FTLE on an unstructured mesh (for Euclidean or non-Euclidean manifolds). For
Euclidean manifolds (e.g., Rn), this expression reduces to,
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Fig. 11 Comparison of FTLE-LCS and invariant manifolds in oscillating vortex pair flow (a)
Unstable (red) and stable (black) manifolds of the two fixed points near (±1.5,0) for the system
parameters (g,e) = (0.5,0.1). See [83] for details. (b) FTLE-based LCS for the same system pa-
rameters. Notice that the ridge of high forward (T > 0) FTLE (red), the repelling LCS, corresponds
with the stable manifold of the left fixed point of (a), and similarly for the high backward (T < 0)
FTLE (gray, the attracting LCS, which corresponds with the unstable manifold of the right fixed
point of (a). Computations by Shibabrat Naik.

s(x, t0, t) =
1

|t� t0|
log
⇣p

lmax(C(x, t0, t))
⌘

, (8)

where C(x, t0, t) =
✓

df t
t0

dx

◆⇤✓
df t

t0
dx

◆
is the Cauchy-Green tensor, ⇤ denotes transpose,

and lmax(A) denotes the maximum eigenvalue of matrix A

FTLE-LCS as Finite-Time Analogues of Stable and Unstable Manifolds. The
FTLE at x measures the maximum stretching rate over the interval T = t � t0 of
trajectories starting near the point x at time t0 [35]. Ridges of high s(x, t0, t) corre-
spond to surfaces of co-dimension one, meaning they separate qualitatively different
regions of flow. Repelling (attracting) LCS for T > 0 (T < 0) are the time-dependent
generalizations of stable (unstable) manifolds of NHIMs. Consider the model of
fluid particles in the presence of an oscillating vortex pair [83], a flow induced by
two counter rotating vortex pairs of equal circulation. This is a time-periodic sys-
tem, where the stroboscopic map has two saddle-type fixed points whose manifolds
can be computed. We can compare these manifolds with the FTLE field.

Even in the absence of, e.g., saddle fixed points, one can use the analogy of
repelling and attracting LCS as stable and unstable manifolds to discern transport
structure. Transport occurs via alleyways bounded by undulating repelling and at-
tracting LCS surfaces. An aperiodic version of heteroclinic-tangle chaos occurs
where these surfaces intersect (see Fig. 10). One can consider finite-time aperiodic
versions of lobe dynamics as governing phase space transport where heteroclinic or
homoclinic-like intersections occur. A rich time-dependent interplay of structures is
observed in geophysical systems [37], such as the atmosphere, oceans, and lakes,
but much is still unknown.

For example, consider a homoclinic tangle observed in a hurricane as in Fig. 12.
The storm shown is Andrea, the first storm of the 2007 hurricane season. Notice the
outline of the U.S. east coast. One can tease out the geometry of entrainment of an
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12 Atmospheric LCS off the coast of Florida (coastal outline shown) for May 2007 computed
from NOAA’s NAM archive data at the 900mb pressure level. The trellis-like intersections of
repelling [orange] and attracting [cyan] curves (a) form an object which behaves like a homoclinic
tangle (shown in schematic, (b)). Coloring according to the dictates of lobe dynamics (schematic,
(c) and actual, (d)), the green tile will get entrained, while the purple and magenta tiles will remain,
or be removed, outside the main vortex defined by the moving separatrix (highlighted in black). As
time progresses ((e) through (h)), we see that the theory’s predictions hold, a consequence of the
geometry of intersections. For reference, the separatrix boundary of the storm’s vortex is shown
again in the final panel, (h).

air mass into a hurricane’s vortex (and detrainment out of the vortex). A separatrix,
defining the boundary of the storm’s vortex, is first determined from intersections
of the repelling and attracting curves (to give an ‘inside’ and ‘outside’). Parcels
are labeled according to lobe dynamics theory, and as time progresses, the parcels
perform lobe dynamics predicts. The green parcel, currently outside, should get en-
trained. Right next to it, but on the other side of a repelling curve, is a light pink
region which should remain outside. Also, the dark magenta region inside will get
detrained out of the vortex. The theory of homoclinic tangles was originally devel-
oped for time-independent or time-periodic systems, but seems to work even in this
turbulent, aperiodic setting. This is remarkable, since there is no actual saddle-type
fixed point with which to associated the ’stable’ and ’unstable’ manifolds. Rather,
a distinguished repelling and attracting LCS intersection point behaves as a saddle
point for the purposes of the theory.
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2.4 Set-Oriented Approach, Alternate FTLE Definition, and
Coherent Sets

A complementary method for computing transport uses almost-invariant sets (AIS),
strongly connected (almost-invariant) regions computed via an operator-theoretic
approach [18, 24, 56]. AISs are defined for autonomous and time-periodic systems,
but for more general time dependence, we consider coherent sets, which generalize
AISs [84]. In a partition of the phase space into subsets, LCS play the role of sep-
aratrices, but coherent sets play the role of the subsets they separate; coherent sets
and LCS are therefore dual structures.

Perron-Frobenius Operator and Box Discretization of Phase Space. Let µ de-
note the Lebesgue measure on M ⇢ Rn and f(x)t

t0 : M⇥R⇥R!M be a flow map
on M from time t0 to t. Let B be a measurable set and f 2 L1(M) be a probability
density function, L1(M) being the space of Lebesgue measurable functions on M.
The unique operator Pt

t0 : L1(M) 7! L1(M) defined by
Z

B
Pt

t0 f dµ =
Z

(f t
t0

)�1(B)
f dµ (9)

is called the Perron-Frobenius operator for the flow f t
t0 , [85]. Equation (9), which

holds for all µ measurable sets, follows from the Radon-Nykodym theorem.
In practice it is usually necessary to numerically approximate the operator Pt

t0 .
This is done by discretizing the domain, M, into a finite number of sets, say
{B1,B2, ...,Bn} which is essentially a grid of boxes, the disjoint union of which
is M, i.e., M =

S
i Bi. A projection p : L1(M) 7! span{B1, ...,Bn} defined by p f =

Ân
i=1 ciXBi , where XBi is the characteristic function of the set Bi and ci =

R
f dµ

µ(Bi)
gives a finite dimensional approximation of f . Since f is a probability density
function, ci = 1

µ(Bi)
. Similarly, Pt

t0 f is projected on span{B1, ...,Bn}. The operator
Pt

t0 : p f 7! pPt
t0 f is a linear operator between finite dimensional vector spaces. Fur-

ther taking the box measures µ(Bi) = µ(B j) for all i, j 2 {1, . . . ,n}, Pt
t0 becomes a

stochastic transition matrix. The entries of the matrix P are determined by a Monte-
Carlo simulation [17, 86]. Each box in the domain contains a fixed number of points
(initial conditions) which are integrated from a time t0 to t. The final position of the
points gives the matrix P as,

(Pt
t0)i j =

µ(Bi\ (f t
t0)
�1(B j))

µ(B j)
. (10)

See Fig. 13 for a geometric interpretation. A time-reversible operator P is required
to apply the above definition for flows in forward time [86]. This is achieved by
creating a reversible Markov operator Pr given by

(Pt
t0)r =

(Pt
t0)+(Pt

t0)
2

(11)
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Fig. 13 Box-discretization
method to calculate P. Box B j
at the final time t is mapped
(backwards) to f�1(B j) at the
initial time t0. The value of the
entry Pi j is the fraction of box
Bi that is mapped into box B j
by f . Note that Ân

j=1 Pi j = 1.

where P is the time reversed analogue of P. Its elements are given by

(Pt
t0)i j =

u1 j(Pt
t0) ji

u1i
(12)

where u1 j and u1i are components of the first left eigenvector, u1, of Pt
t0 . For a vol-

ume preserving flow in which the domain is uniformly discretized, Pt
t0 = (Pt

t0)
⇤, the

transpose of Pt
t0 . Henceforth for convenience the time reversible operator (Pt

t0)r is
referred to simply as P unless there is an ambiguity about the initial and final times
t0 and t. The Markov operator P has the semigroup property of Pt

t0 = Ps
t0Pt

s , where
s 2 (t0, t).

Almost-Invariant Sets. A probability density function f is invariant under the flow
if and only if f is a fixed point of P, i.e., f = P f [85]. The associated measure µ f
is called the invariant measure of the flow [24]. If the flow f t

t0 is volume preserving
then the highest eigenvalue of P is always 1. This means that the entire domain M
maps back onto itself. We make the additional observation that from (9), it follows
that if f > 0, then P f > 0. A set B 2 B is considered almost-invariant over the
interval [t0, t] if

rµ f (B) =
µ f (B\ (f t

t0)
�1(B))

µ f (B)
⇡ 1. (13)

One can in theory construct an optimization problem to maximize the value of rµ f

over all possible combinations of sets B 2 B. But this problem is combinatorially
hard to solve even for simple flows. Therefore heuristic methods advanced in [17,
86] are adopted to identify maximally AISs. It was shown in [17, 86, 87] that the left
eigenvector corresponding to the second eigenvalue gives the ‘second most’ almost-
invariant sets, the invariance being higher if the second eigenvalue of P is closer to
1, with

rµ f (B) =
Âi, j u jPji

Â j u j
. (14)

For computational reasons we will make use of the singular vectors of Pr in-
stead of the eigenvectors as was done in [88]. This is because the singular value
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(a) (b)

Fig. 14 (a) Second eigenvector U⇤
2 for the lid-driven cavity flow and (b) AIS obtained from positive

part of the second eigenvector of P, in black (composed of three disconnected sets, which in this
case are almost-cyclic sets of period 3). The phase space complement, in white, is also an AIS.
Details in [84].

decomposition is well conditioned and less sensitive to small changes in the matrix
Pr introduced due to the discretization. It should be noted that Pr is self-adjoint and
normal since Pr = 1

2 (P+P⇤) = P⇤r and P⇤r Pr = PrP⇤r . From the spectral theorem, Pr
has a unitary eigen-decomposition and the left eigenvectors of Pr are given by

Pr = Y ⇤LY (15)

with Y ⇤ = Y�1. Pr also has a unique singular value decomposition given by Pr =
USV ⇤ = P⇤r = V SU⇤ and Y = U , i.e., the left singular vectors and left eigenvectors
of Pr are the same.

We note that the singular vectors U⇤ form an orthonormal basis for Pr. The first
singular vector U⇤

1 , associated with the singular value 1, is the stationary distribution
and is positive. Since U⇤

2?U⇤
1 we can infer that U⇤

2 has both positive and negative
parts. From the definition of a Markov operator, Pr(U⇤

2 )+ > 0 and Pr(U⇤
2 )� < 0. So

the sets on which the positive and negative parts of the second singular vector U⇤
2

are supported are AISs and partition the domain M into two parts. A 2-dimensional
example from a periodic fluid velocity field in fluid mechanics is given Fig. 14,
showing the vector U⇤

2 and the AISs.

Agreement Between AIS-Based and Lobe Dynamics-Based Transport Calcu-
lations. We note that in an autonomous setting, regions defined by the lobe dy-
namics approach are often AISs defined using the method described above. And the
rates of transport determined by the two methods—lobe areas and AIS ‘leakiness’,
respectively—are also in agreement [18], showing that, at least for autonomous or
periodic systems, the geometric and probabilistic approaches are in agreement.

Coherent Sets for Systems of Arbitrary Time-Dependence. In autonomous sys-
tems an important feature of AISs is that they identify sets that mix minimally with
the rest of the domain. Many time-dependent systems of practical interest may not
have AISs. Moreover, systems defined by numerical data may be defined over leaky
domains. In these cases, the approximation of the Perron-Frobenius operator by a
stochastic transition matrix becomes difficult.

To extend the concept of AIS to time dependent systems we make the observation
that AISs are also sets that stretch and deform minimally. Coherent sets—the time
dependent analogues of AISs—can be defined as sets that do not mix significantly
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(a) t = 0 (b) t = t f

Fig. 15 Coherent sets (black) do not disperse significantly while non coherent sets (gray) do. In (a)
the three coherent sets (black) identified by our sI  0.06 criterion and a non-coherent set (gray)
are shown at t = 0. At t equal to one period of the fluid velocity field, t f , the non-coherent set
disperses significantly more than the coherent sets. Notice that the three coherent sets are similar
to the three-components of the AIS in Fig. 14. In (b), mixing between the ’particles’ of the non-
coherent set with those of the coherent sets is shown.

with the rest of the domain. This can be made more precise by first defining a set
oriented FTLE. To make the discussion more concrete we initially define the FTLE
for two dimensional systems.

Consider a uniform probability density function supported on a set B given by,
f = 1

µ(B)XB, where XB is characteristic function of B. The covariance matrix of f

is Ii j = E[(Xi�Xi)(Xj�X j)], with i, j = {1, . . . ,n} where (X1, . . . ,Xn) is the mean
value of the random vector X and E[ · ] denotes the expected value. Under the action
of the flow f t

t0 , f is mapped to Pt
t0 f where Pt

t0 is the associated Perron-Frobenius
operator. Let I( f ) be the covariance of f and I(P f ) the covariance of P f . Then the
FTLE of B denoted by sI(B, t0, t) is defined as

sI(B, t0, t) =
1

|t� t0|
log

 p
lmax(I(P f ))p
lmax(I( f ))

!
. (16)

It can be shown by direct calculation that the covariance FTLE obtained from this
definition and the standard FTLE definition (8) have the same value, i.e., sI(B, t0, t)
converges to s(x, t0, t) in the limit where B converges to a point x. But the sI defi-
nition can apply to arbitrary sets, not just points.

A set B is almost-coherent during [t0, t] if sI(B, t0, t) ⇡ 0. This definition of co-
herence captures the essential feature of a coherent set: it does not mix or spread
significantly in the domain. This definition also can identify non-mixing translat-
ing sets. Coherent sets can be identified by setting a heuristic threshold, say smax

I ,
and considering as coherent sets the regions where sI  smax

I . The probabilistic
techniques described in this section are illustrated by the example of a piecewise
smooth periodic lid driven cavity flow, with period t f (described in [31]). The AISs
are shown in Fig. 14 while the coherent sets for the same example are shown in Fig.
15. Notice the similarity for this case. The coherent set definition has the advantage
that it is applicable to systems of arbitrary time dependence where coherent sets
could be highly mobile.

As recently discovered [31], the space-time ‘braiding structure’ of almost-cyclic
coherent sets can be analyzed using topological methods [52] to predict and quantify
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chaotic transport in the surrounding fluid. Since these tools are based in topology,
the overall space-time structure of their interactions determines the transport pre-
dictions without requiring highly-resolved dynamical information. The merging of
coherent sets and topological perspectives has great potential for making quantita-
tive predictions of global transport with limited information.

3 Exploiting Chaotic Transport for Efficient Movement

Natural environmental fluid flows, such as those found in the atmosphere, oceans,
lakes, and ground water, exhibit complex dynamics. This complexity is actually a
boon for transporting mobile quasi-passive agents. Rich, chaotic dynamical struc-
ture makes efficient movement and dispersal possible, whether the agents are bio-
logical, chemical, or engineered devices like sensor platforms and delivery vehicles
that seek energy efficiency or stealth [89]. Exploiting (or preventing) this trans-
port requires the ability to accurately and rapidly identify these complex dynamical
structures and predict their future motion. Despite the flow complexity, preliminary
work suggests that it is possible to discern the time-dependent transport network
of dynamical structures that geometrically organize the motion over scales of inter-
est in realistic flows, e.g., Fig. 10. However, substantial work remains to be done
to develop the underlying dynamical systems theory, connect these mathematical
structures with experimental data, and implement efficient computation and predic-
tion of observed structures.

3.1 Using Invariant Manifolds and their Time-Dependent Analogs
in Efficient Control Strategies

Understanding the time-varying structures governing transport is important for ad-
vanced prediction (and control) of natural processes, but can also be exploited for
engineered systems; agents navigating using invariant manifolds of saddle points (or
NHIMs) or LCSs (in the case of data-based, time-aperiodic flows) can easily switch
from one region of interest to another with minimal energy expenditure. Consider
the schematic example of Fig. 16, where small controls can steer an agent into sub-
regions which travel to desired destinations, which would not be reachable by a
direct route.

Compared with conventional control methods that use only local information,
incorporating global information opens new possibilities. The techniques to achieve
this are a critical step in a long term vision to control multiple weakly propelled
agents in 3D time-chaotic flows, in which the goal is to cooperate to achieve an
overall group objective such as surveillance, search and rescue, exploration, or im-
proved data collection or flow prediction.
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Fig. 16 The same regions as given in Fig. 6 are redrawn. A weakly propelled mobile agent initially
at position 1 in region R4 has an objective or reaching a target position 2 in region R2, but a direct
route is not possible given control limitations. The agent therefore follows a strategy of taking
advantage of the existing flow structure, using a small control to enter subregion A. Under the
evolution of the system (e.g., consider we have a period-T flow viewed via a time-T map), after
several periods the subregion has evolved without control into B in region R2, where a small control
can take the agent to the desired position.

The use of natural lanes of transport bounded by LCS has been extensively de-
veloped in control strategies for interplanetary spacecraft trajectory design, where
in this setting the LCS are the stable and unstable manifolds of NHIMs (see [47, 51]
and references therein). In this application, on-board fuel is a premium, therefore the
goal is to find fuel-efficient paths which lead to, for example, an orbit around a moon
of Jupiter. Although the flow field for a spacecraft lives in a six dimensional phase
space—three dimensions of position and three dimensions for velocity—the com-
putation of LCS is straightforward. The LCS reveal gravitational sweet spots that
provide natural gateways to destinations. Harnessing this effect to good purpose,
mission designers can plan fuel-efficient routes, ones that would not otherwise be
imaginable or technically feasible.

Theoretically, LCS are expected to reveal natural fuel-free or low-fuel dynamical
channels for spacecraft even in a time-dependent gravitational field [90]. This has
been demonstrated numerically, where for the time-dependent flow field, the LCS
are typically time-dependent surfaces [69, 70, 73, 91]. Targeting of LCS for space-
craft control has been demonstrated to reveal near optimal trajectories even in the
presence of navigation or control errors [92].

Although a different setting, LCS have also been shown to approximate fuel-
optimal paths for underwater gliders in coastal waters [93]. The approximately two-
dimensional near-surface ocean flow is obtained from observational data and reveals
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rich dynamical structure with discernible features despite the time-chaotic depen-
dence of the flow.

3.2 Control Strategies for Weakly Propelled Vehicles in Complex
Environmental Flows

LCS- and AIS- or coherent set-based control can provide deployment and station-
keeping where other control schemes fail, particularly for quasi-passive agents with
velocities that are significantly lower than that of the environmental flow velocity
[94]. We contend that vehicles (whether nano-, micro- or macro-scale) with limited
power and control authority can similarly exploit a complex environmental flow
for efficient transport when motion planning is informed by the evolving structures
identified in the flow.

Controllability and Accessibility. Fundamental to motion planning in a time-
varying flow is the question of controllability on a given time interval: Is there a
controlled trajectory connecting arbitrary initial and final states? For a weakly pro-
pelled agent in a significant flow, the answer will be “no,” but the system may be ac-
cessible in the sense that the reachable subspace is non-empty. Thus, one must ask:
Does the reachable subspace contain a point or region of interest? And, if so: What
control history is required? While there are well-developed notions of controllabil-
ity and accessibility for nonlinear time-varying systems, constructive results (i.e.,
control design methods) exist only in special cases where the system exhibits an
underlying structure that can be exploited to simplify analysis. For drift-free, time-
invariant systems, for example, controllability can be tested using the Lie algebra
rank condition [95, 96]. Having verified controllability, one may generate a time-
varying input history, perhaps constructed from a library of “motion primitives,” to
achieve a control objective. Of course, controllability for systems with drift is more
challenging.

In cases of interest to us, the primary source of drift will be the ambient flow
field, which will break any natural symmetries that might otherwise be exploited
in controllability analysis. Moreover, because environmental drift will dominate the
dynamics of a weakly propelled agent, the dynamics will be accessible, at best,
with severe implications for motion planning. Some key theoretical questions arise.
What is the appropriate notion of accessibility for a weakly propelled agent in a
time-varying flow that is characterized by LCS or coherent sets and how does one
assess this property? Can structural properties of LCS or coherent sets be exploited
to simplify the computations required to evaluate accessibility and characterize the
reachable subspace?

To answer these questions, one must cast the control objective (e.g., waypoint
following, area or volume coverage, etc.) in terms of the reachable subspaces for
individual agents, given the flow field structure. Accessibility will be tied to pre-
dictions of the time-varying flow and dynamical structures. One must therefore con-
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sider a tradeoff between potential benefits of a long planning horizon (e.g., transport
economy) and uncertainty in the model prediction.

Optimal Locomotion in Flows. Having developed machinery to evaluate accessi-
bility and characterize the reachable subspace, one may then consider motion plan-
ning. What is the most energy-efficient path from point A to point B? What path
from point A to point B maximizes the reachable subspace in the terminal phase?
Given an initial distribution of weakly propelled agents, what collection of paths
maximizes information gain (concerning the flow itself, some airborne constituent,
some object on the ground, or any other measurable quantity of interest)? The first
of these questions has been considered in some detail for kinematic vehicle models
in planar, constant-relative-speed motion where the flow field is steady and uniform.
For a kinematic particle model with turn rate constraints, for example, there are ge-
ometric path planning strategies that concatenate maximum effort and singular arcs
to create minimum-time paths [97, 98]. Turn acceleration constraints are considered
in [99]. While these methods exploit (or mitigate) the effects of the ambient flow, the
vehicles are “strongly propelled” and the “structure” of the flow is trivial, such as a
cellular flow. We ask whether, in the more challenging conditions of a time-varying,
flow field, the structural properties of LCS or coherent sets can be exploited to ob-
tain simple, effective motion planning and control strategies for weakly propelled
vehicles.

A Conceptual Example. Suppose we have a fully actuated mobile agent and we
consider only translational dynamics. For simplicity of discussion, we assume that
the agent is a point of unit mass. We can also suppose that there fixed obstacles to
be avoided. This will lay a foundation for more detailed future studies considering
the effects on a finite-size body or vehicle [100], with perhaps biologically-inspired
shape change actuation [101] where coupling of translational with rotational motion
is critical.

We desire a feedback control law to (asymptotically) drive the agent to a target
point xT in a target region, which may have dynamics of its own, e.g., a point on or
near an LCS curve (Fig. 17(b)). A detection shell, a ball of radius rdet, is given to
the agent such that the agent can respond to any feature within this shell, such as an
LCS curve that its desirable to follow.

The agent’s equation of motion are given by

ẋ = vf(x, t)+ vr and v̇r = u. (17)

Subscripts indicate that terms pertain to the flow (“f”) and flow-relative motion (“r”)
due to control. The objective in this example is to drive an agent asymptotically to a
target point xT in a target region, which may have dynamics of its own, e.g., a point
on or near an LCS curve (Fig. 17(a)). We are interested in the weakly propelled or
quasi-passive case where kvfk < kvrk, where knowledge of the geometry of flow
structures is critical to motion planning. Assigned to the agent is a detection shell,
a ball of radius rdet, within which the agent may respond to flow features such as
an LCS curve that might be followed toward the target. Inspired by recent devel-
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(a) (b)

Fig. 17 (a) Straddling an LCS to easily switch between two dynamically distinct regions, for in-
stance, two eddies. (b) The mobile agent follows the nearest LCS curve which is within a detection
shell, shown schematically at position 1. At position 2, the agent switches to another curve, fi-
nally reaching the target region at 3. The arrows on the LCS curves denote the motion along them.
Although not shown in this schematic, the LCS curves have dynamics of their own and will move.
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Fig. 18 A vehicle in a simple model of a perturbed double-gyre flow is shown at three successive
times. The vehicle is using small control to take best advantage of the flow to reach the target
region by following an LCS curve. The evolution of the LCS is visible as well as the short-time
estimate of the vehicle’s future trajectory. See [94] for details.

opments in reactive collision avoidance [102], the agent might employ a feedback
control law u = F p + Fg + Fd comprising an error potential force F p = �—V (x),
a gyroscopic steering force Fg, and a damping force Fd . Rather than plan an ex-
plicit path based on a flow field estimate, the agent may simply react to the evolving
ambient flow conditions as they are encountered.

These forces can be chosen to illustrate three motion control methods that exploit
an environmental flow characterized by an coherent set or LCSs:

1. Straddling an LCS for easy movement between dynamically distinct regions (AIS
or coherent sets): We consider the target point xT to be on an LCS, moving just
ahead of the agent as in Fig. 17(a). One suitable potential function is a quadratic
function of the distance to the target V (x) = 1

2 ||x� xT ||2.
2. Following an efficient navigation pathway bounded by time-varying LCS sur-

faces (i.e., within an evolving coherent set) to reach a target region: We use a
form of the gyroscopic force appropriate for tracking a smooth boundary [103].
If more than one LCS surface is within the agent’s detection shell, the agent only
reacts to the closest one, as in Fig. 17(b).
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t = 46 t = 375

t = 543 t = 845

Fig. 19 Two aerial vehicles are experiencing atmospheric flow. Although starting and ending at the
same points, a strongly propelled high speed vehicle (straight line) uses much more energy than a
weakly propelled quasi-passive vehicle that ‘jumps’ over LCS from one coherent set to another as
needed to reach the target. The background grayscale field is the time-varying FTLE field; darker
regions are more coherent, separated by ridges (LCS). The weakly propelled vehicle agent moves
passively along a coherent set from t = 0 to around t = 400, when it starts heading in the wrong
direction. So the vehicle applies a little control to jump over an LCS into a different coherent set
heading in the right direction, with some fine control near the end to reach the target. Continental
and political boundaries are shown to provide scale. Computations by Carmine Senatore.

3. Leap-frogging coherent sets to reach a destination: Passively following a coher-
ent set while it heads in the general direction of the target region and when it
veers away, selectively “jumping over” LCS to neighboring coherent sets which
are headed in the right direction. This strategy views the environmental flow as
an ever-changing system of “conveyor belts” moving in different directions.

The proposed strategies will quickly determine near energy-optimal trajecto-
ries: an example of strategy 2 is shown in Fig. 18 for a vehicle in a perturbed
double-gyre flow [94]. A more realistic example in a high-fidelity atmospheric flow
over the U.S. is shown in Fig. 19, displaying option 3. For any numerical optimal
control algorithm, a good initial guess is vital, especially if the problem is very sen-
sitive numerically. By having good approximate paths “built in” to the algorithms
via LCS, the above control strategies will initialize any optimization strategy closer
to the true optimum path. We hypothesize that this will also hold if one considers
the situation where LCS can only be determined from approximate forecasts—for
instance, LCS from model forecasts or assumptions on the evolution of the LCS
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themselves up to some finite-time horizon. One can also consider that for different
motion models, generalized hyperbolic surfaces will emerge. That is, different mod-
els and controls give rise to different flow maps and thus additional generalizations
of LCS which may be important for motion planning.

4 Conclusions

Several geometric and probabilistic methods for studying chaotic phase space trans-
port have been developed and fruitfully applied to diverse areas from orbital me-
chanics to biomechanics to fluid mechanics and beyond. Increasingly, systems of
interest are determined not by analytically defined model systems, but by data from
experiments or large-scale simulations. We have discussed those features of phase
space transport in finite-time systems which seem to be robust, considering invariant
manifolds and invariant manifold-like objects, and their connection with concepts
such as symbolic dynamics, almost-invariant sets, and coherent sets.

The methods outlined above provide the mathematical and computational tools
necessary to identify and track dynamical structures (i.e., LCS and coherent sets) in
multi-dimensional, time-dependent, complex flows in abstract phase spaces. When
the focus is on fluid flows, the presence and prediction of these dynamical structures
in realistic fluid flows can be exploited to achieve efficient transport of vehicles with
limited power and control authority. These methods may even provide insight into
the movement of weakly propelled agents in biological contexts, such as jellyfish
or rays in the oceans, airborne pathogens in the atmosphere [89], or internal physi-
ological flows.
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