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A B S T R A C T   

An accurate forecast of the red tide respiratory irritation level would improve the lives of many people living in 
areas affected by algal blooms. Using a decades-long database of daily beach conditions, two conceptually 
different models to forecast the respiratory irritation risk level one day ahead of time are trained. One model is 
wind-based, using the current days’ respiratory level and the predicted wind direction of the following day. The 
other model is a probabilistic self-exciting Hawkes process model. Both models are trained on beaches in Florida 
during 2011–2017 and applied to the red tide bloom during 2018-2019. For beaches where there is enough 
historical data to develop a model, the model which performs best depends on the beach. The wind-based model 
is the most accurate at half the beaches, correctly predicting the respiratory risk level on average about 84% of 
the time. The Hawkes model is the most accurate (81% accuracy) at nearly all of the remaining beaches.   

1. Introduction 

Harmful algal blooms of the toxic dinoflagellate Karenia brevis, 
referred to as “Florida red tide” (henceforth abbreviated as RT) have 
affected the Florida Gulf coast for centuries. There is emerging evidence 
that these blooms have increased in frequency, intensity, and geographic 
spread in recent years (e.g., Alcock, 2007; Corcoran et al., 2013; Fleming 
et al., 2011; Nierenberg et al., 2010a; Nierenberg et al., 2010b; Nier-
enberg et al., 2009). K. brevis produces brevetoxin, a neurotoxin that can 
result in massive fish kills and mortalities to marine mammals and sea 
birds. Indirectly, this can lead to neurotoxic shellfish poisoning in 
humans from consuming contaminated shellfish (Corcoran et al., 2013; 
Kirkpatrick et al., 2006). 

More directly, and of primary interest for this study, brevetoxin is 
released into near-shore aerosol as RT cells are lysed by wave action, or 
aerosolized though bubble-mediated (Pietsch et al., 2018) transport. If 
inhaled by humans, brevetoxin can produce upper and lower respiratory 
irritation, such as a burning sensation of eyes and nose, and a dry, 

choking cough. While these symptoms have been found to be relatively 
short-lived in healthy individuals (upon separation from the harmful 
aerosol), RT effects can be more severe and longer-lasting for people 
with chronic respiratory conditions, such as asthma (Alcock, 2007; 
Backer et al., 2003; Corcoran et al., 2013; Fleming et al., 2011; Kirk-
patrick et al., 2009; 2011; Nierenberg et al., 2010b). 

In this study, the potential of forecasting beach-specific respiratory 
irritation one day ahead of time is assessed, using previous irritation 
reports at the same location. Two models are proposed: one based on the 
current respiratory irritation level and a forecast of the next day’s wind 
direction, and the other based on RT as a self-exciting process (or 
Hawkes process). Both are data-driven, trained on data on from 
2011–2017, and tested on data from a severe RT bloom during 2018- 
2019. Both are compared with a simple persistence model, which as-
sumes the next day’s respiratory irritation level will be the same as the 
current day’s. 
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1.1. Monitoring of red tide blooms 

Monitoring for K. brevis blooms involves the following primary 
components. Satellite imagery is processed to locate potential blooms. 
Processed images are made available to managers and state health of-
ficials in the Gulf of Mexico through the National Oceanic and Atmo-
spheric Administration (NOAA) Harmful Algal Bloom Operational 
Forecast System (HAB-OFS) (National Oceanic and Atmospheric 
Administration, 2021). In Florida, where blooms tend to occur most 
frequently, water samples are collected weekly along the shore and from 
offshore transects by the Florida Fish and Wildlife Research Institute 
once a bloom is identified. Samples are delivered to a laboratory for cell 
enumeration via microscopy. Microscopic enumeration takes about one 
hour per sample (Hardison et al., 2019). Typically, samples are pro-
cessed within 12 days and can take longer for more samples from remote 
areas. The resulting cell counts are then used by HAB-OFS to provide 
broad, county-wide forecasts of brevetoxin exposure risks. The cell 
count data for a particular county can be up to a week old by the time it 
is available to the public. In terms of forecast accuracy, (Stumpf et al., 
2009) found that while county-wide forecasts of respiratory risk were 
correct 70% of the time, they were only correct 20% of the time when 
applied to individual beaches. 

Recently, beach-level 24-hour forecasts for respiratory impacts have 
received the most focus from policy agencies (Moeltner et al., 2021). The 
Gulf of Mexico Coastal Ocean Observing System (GCOOS) recently 
developed a beach-level risk forecast that includes more than 20 Gulf 
Coast beaches (System, 2021). The forecast uses current wind forecasts 
as well as near real-time cell counts of K. brevis from water samples 
enabled by HABscope, a portable microscope system (Hardison et al., 
2019). While the beach reporting system described below provides 
different data (actual beach-level respiratory impact, collected daily 
over several years), one can envision the potential to tie in to existing 
forecast frameworks, fusing the multiple data sources for more accurate 
forecasts or greater spatial coverage. 

1.2. Beach conditions reporting system 

To address the need for location-specific conditions, a Beach Con-
ditions Reporting System (BCRS) was initiated in 2006 (Currier et al., 
2009; Kirkpatrick et al., 2008; Nierenberg et al., 2011; Stumpf et al., 
2009) and was redeveloped in 2015 when it began gaining public 
usership (Mote Marine Laboratory & Aquarium, 2021). From 
2017-2019, the site gained approximately 1.5 million users. The BCRS 
provided smartphones to (professional) lifeguards and park rangers with 
an app designed for reporting beach conditions. Twice each day (10:00 
and 15:00 local time), lifeguards and park rangers report occurrence of 
coughing as described further below (and other conditions such as 
presence of dead fish). While lacking the quantification and precision of 
microscopy, the reports provide beachgoers with useful real-time in-
formation for adequate planning (i.e., severity of aerosolized toxins, 
potential risks to asthmatics, presence of dead fish, etc.). The BCRS is 
managed by Mote Marine Laboratory with lifeguards and park rangers 
as the primary reporters in several counties (Mote Marine Laboratory & 
Aquarium, 2021). The BCRS data compilation is automated, with timely 
sharing of data with agencies, including Florida Fish and Wildlife Con-
servation Commission and NOAA. 

Though the BCRS provides more timely information about beach 
conditions than the weekly sampling described earlier, it does not pro-
vide key information needed for consistent forecasts. It provides no 
direct information on K. brevis cell presence, but rather an indirect 
assessment of K. brevis cell presence via water color and the presence of 
dead fish. 

While RT outbreaks can occur throughout the entire year, aero-
solized RT impacts have shown substantial variability both in a temporal 
and spatial sense. They can last from a few hours to multiple days or 
even weeks at a given site (e.g., beach), and vary in intensity across sites 

at a given point in time, with heavily impacted areas at times alternating 
with completely unaffected shoreline segments (Nierenberg et al., 
2009). 

While efforts are ongoing to curb RT blooms via prevention and 
control methods (Alcock, 2007; Kirkpatrick et al., 2014; Nierenberg 
et al., 2010a; Vargo et al., 2008), the predominant management strategy 
to date has been mitigation, via early detection and avoidance of human 
contact (Alcock, 2007; Corcoran et al., 2013). 

2. Methods 

Below, the RT respiratory irritation data set is described. Afterward, 
two different models to predict RT irritation risk one day ahead of time 
are described: a wind-based model and a Hawkes process model. 

2.1. Respiratory irritation data 

Starting in August 2006, the professional lifeguard corps in Sarasota 
County began twice-daily reports (approx. 10:00 and 15:00 local time) 
of the presence of respiratory irritation at six sites, as part of the BCRS. In 
January 2007, two additional lifeguard sites were added in Manatee 
County. Respiratory irritation is defined by the amount of coughing 
observed in addition to the personal conditions experienced by the 
lifeguard. The presence of people coughing is used as a proxy for res-
piratory irritation (cough, nasal congestion, throat irritation, chest 
tightness, wheezing, and shortness of breath). Coughing has been 
documented as a response to K. brevis aerosols in studies involving 
occupationally exposed workers, recreationally exposed beachgoers, 
and asthmatics (Backer et al., 2003; 2005; Fleming et al., 2005; 2007). 

Lifeguards ‘listen’ to beachgoers for the presence and/or frequency 
of coughing. The symptoms observed by the lifeguards are reported at 
various levels of respiratory irritation as shown in Table 1. 

Irritation levels are given on a four-tiered scale from ‘None’ (no 
coughing noted nearby), ‘Slight’ (a few coughs and sneezes within 30 s), 
‘Moderate’ (A cough/sneeze heard every 5 s), and ‘High’ (continuous 
coughing and sneezing in nearby surroundings). For portions of the 
analysis below, moderate and high classes are together as ‘high’ risk, as 
these were the level at which impacts affect the general public Stumpf 
et al. (2009). The ‘none’ and ‘slight’ are grouped as ‘low’ risk. The 
two-tiered (binary) classification of RT respiratory irritation risk was 
used in this study for an initial analysis of forecasting methods, based on 
historical data. 

2.2. Statistics describing the data set 

Since December 2011, the BCRS has monitored RT conditions at over 
40 beaches in nine counties along the Gulf coast via citizen scientists, in 
most cases local lifeguards. This study considered only the time frame 
when 40 beaches were reporting. The eight beaches which are the focus 
of this study (see Fig. 1) were chosen because they were the only beaches 
with enough reports of high respiratory risk days to develop a conver-
gent model, as described below. 

Figure 2 shows the annual aggregate sum of RT irritation reports 
(level ‘slight’ or higher) from the six beaches in Sarasota County. It is 
clear that in 2018, the county was especially hard-hit by RT. 

Table 1 
The four-tiered red tide respiratory irritation levels reported in the Beach Con-
ditions Reporting System, and the corresponding two-tiered risk level defined 
for this study.  

Irritation level Risk level In a 30 s audio sample 

None Low No coughing/sneezing heard in 30 s 
Slight Low A few coughs/sneezes heard in 30 s 
Moderate High A cough/sneeze heard every 5 s 
High High Coughing/sneezing almost continuously  

S.D. Ross et al.                                                                                                                                                                                                                                  
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For the purposes of the model, only the highest daily irritation level 
is considered. Reports are given twice per day, separated by only a few 
hours, and are often the same. When they differ, the higher of the four- 
tiered irritation level is used to describe the risk-level for that day. For 
the two-tiered irritation risk of high and low, there was near unanimous 
agreement between the two daily reports. 

Correlation of irritation level across distance and time. From the BCRS 
database, correlation of the respiratory irritation level with nearby 
beaches is considered. For the four-tier irritation levels described as 
None to High (see Table 1), numerical values 1 through 4 were assigned, 
respectively. As one can see in the left panel of Fig. 3, the correlation of 
nearby beaches (within a few km) is high, 

but drops off to about 50% for beaches from 5 km up to approxi-
mately 25 km away, decreasing approximately monotonically with 
distance. One can also consider the correlation of irritation level across 
time for an individual beach. The average auto-correlation of a beach’s 
respiratory irritation level versus time-lag is reported. Notice there is a 
moderate correlation for 1 day, but the correlation drops to about zero 

after 2 days. These spatiotemporal correlations are reported merely to 
describe the data set. They are not incorporated into the models 
described below. 

2.3. Partition of data into training and testing sets 

The BCRS database contains respiratory irritation reports from 
December 2011 to April 2019. Following standard practice in machine 
learning (Brunton and Kutz, 2019), a data set must be partitioned into a 
training and testing set. A model is constructed from the training set and 
validated on the testing set. Training on earlier data in order to test on 
later data is a common method as it mimics forecasting, and this 
approach will be followed in the current study. The data reveal that 
there was a time-frame of a significant number of reports during 2018 
until early 2019 (Fig. 2). The 2018-2019 time-frame therefore emerges 
as a testing data set. All earlier data, from 2011-Dec-31 to 2017-Dec-31, 
are considered as the training data set. 

The database has long stretches of no respiratory irritation reports 

Fig. 1. Eight beaches along the Florida Gulf Coast out of 40 for which reporting is available from 2011-2019. These eight have the highest number of reported red 
tide respiratory events: six are in Sarasota County and two are in Manatee County. 

S.D. Ross et al.                                                                                                                                                                                                                                  
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(that is, recorded as None). For forecasting purposes, the ability to 
predict respiratory irritation during a cluster of such events is a primary 
focus of this study. To be precise, a red tide respiratory irritation episode is 
defined on a beach-by-beach basis for all data as follows. A RT respi-
ratory irritation episode is said to begin the day when the BCRS irritation 
report (see Table 1) first goes above None and ends 7 days after the last 
irritation report above None. 

2.4. Wind-based model 

The wind direction reported from the BCRS at each beach was given 
as one of the eight usual directional octants of width 45◦ (N, NE, E, SE, S, 
SW, W, and NW). For the beaches of interest on the west coast of Florida, 
onshore winds were defined as winds blowing from 168.75∘ to 326.25∘ 

(S clockwise to NW, following Stumpf et al., 2003; Stumpf et al., 2009), 
which presumes the 330∘ to 150∘ orientation of the coastline, as shown 
in Fig. 4. 

It is noted that the beach coastlines do not deviate enough from this 
assumed coastline for the coarseness of the input wind direction to make 
a difference in modeling. 

For a wind-based model, the following statistical analysis from the 
BCRS database is performed for the training set (years 2011–2017), 
restricted only to RT respiratory irritation periods. For a respiratory 
irritation level of rt on day t, where rt∈ {None, Slight, Moderate, High}, 

the probability of rt+1 on day t + 1 is calculated, based on the fre-
quencies of such occurrences in the database. Two conditions are 
considered: onshore winds on day t + 1 and offshore winds on day t+ 1. 
The results are shown in Fig. 5. 

For instance, if today’s respiratory irritation level is Moderate, and 
there will be onshore winds tomorrow, then with over 60% probability, 
tomorrow’s irritation level will be Moderate or High (high risk). On the 
other hand, if tomorrow’s winds are offshore, then with about 60% 
probability the irritation level will improve, to Slight or None (low risk). 

If this probability distribution is assumed to hold for future events, 
then one has a straightforward forecast model for the respiratory irri-
tation level based on the weather forecast, in particular, the wind di-
rection forecast. To get a deterministic model in place of a probabilistic 
model, one can assume that the state with the maximum likelihood is the 
one which occurs. This leads to the simple model given in Fig. 6. 

For instance, if the irritation level today is at None, but tomorrow has 
onshore winds, the maximum likelihood is that it will be Slight 
tomorrow, since the light-blue bar in the first stack of the left panel of 
Fig. 5 is longer than all others. In place of the four-tiered irritation level, 
one can use the simpler two-tiered irritation risk level, low and high, as 
given in Table 1. This coarser, binary description of the irritation level is 
used as it is more amenable to modeling and validation. 

Fig. 2. Reports of respiratory irritation caused by red tide for Sarasota County, from December 2011 to April 2019.  

Fig. 3. (left) Correlation of red tide respiratory irritation level between the different beaches in Fig. 1 as a function of coastline distance. (right) The average auto- 
correlation of a beach’s red tide respiratory irritation level with time. 

S.D. Ross et al.                                                                                                                                                                                                                                  
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2.5. Hawkes process model 

Hawkes processes have been used to model a remarkable range of 
phenomena. From earthquakes (Ogata, 1988; Türkyilmaz et al., 2013), 
to gang related violence (Mohler et al., 2011; Park et al., 2021) to 
econometrics (Bacry et al., 2013; Errais et al., 2010). This type of model 
performs well in situations where there is evidence for a clustering of 

events in time. 
Hawkes processes are a type of temporal point process. The classic 

temporal point process is the homogeneous Poisson process, an example 
of which is the number of asteroids striking the Earth. Presumably the 
probability of an asteroid strike is independent of whether or not there 
was a previous strike. Poisson processes are thus “memoryless” and 
events are roughly equally spaced in time. An illustrative example of a 

Fig. 4. Definition of onshore and offshore wind directions for the beaches studied. The standard wind direction convention is used, where direction denotes where 
the wind is coming from. 

Fig. 5. Respiratory irritation level on day t + 1 as a function of the level on day t and the wind condition on day t + 1; onshore or offshore winds.  
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homogeneous Poisson process compared to a non-homogeneous 
(Hawkes) Poisson process is provided in Appendix A. 

A homogeneous Poisson process is a stochastic point process in 
which events happen with constant rate λ and with probability, 

PPoisson(k|λ) =
(λt)k

k!
e− λt, (1)  

where λ has units of inverse time. A non-homogeneous Poisson process is 
one in which the rate parameter λ(t) is a function of time. A linear 
Hawkes process with an exponential kernel (Hawkes, 1971) is a 
non-homogeneous Poisson process where, 

λ(t) = λ0 +
∑

i
αe− β(t− τi). (2)  

where λ0 ≥ 0 is the background intensity rate, α > 0 is the excitation 
level, β > 0 is the reversion level, and {τ1, τ2, ...τi} is the observed true 
sequence of past event times (high risk days in the current study). 

A Hawkes process is known as a self-exciting process because when an 
excitation happens the rate increases before decaying to the natural 
unexcited rate λ0 (see Appendix A). The rate initially increases by the 
amount α when an event arrives but exponentially decays with rate β 
towards λ0. The Hawkes process maintains a finite rate λ(t) so long as α 
< β (Laub et al., 2015). 

Estimation of the parameters for the Hawkes process is done via 
maximum likelihood estimation (MLE) of Fisher (1922), a procedure for 
estimating model parameters from a training set such that the observed 
data is most probable (Brunton and Kutz, 2019). Details of MLE for a 
Hawkes process can be found in Appendix B. For each beach, the pa-
rameters λ0, α, β, and Pthreshold are estimated based on the training data 
set for that beach. If the parameters converge to the same values inde-
pendent of random initial parameters in the MLE process, the Hawkes 
model has converged. Only beaches which have a convergent Hawkes 
model are included in the Results. It is expected that not all, or even a 
majority of the beaches will have convergent Hawkes models, as it is 
known that for some types of data, parameter estimation is quite sen-
sitive to the random initial guess (Veen and Schoenberg, 2008). 

Once the parameters {λ0,α, β, Pthreshold} have been estimated for a 
given beach, the probability of observing no events (high risk days) at 
each time is determined by substituting λ(t) into Eq. (1), where λ(t) is 
given by Eq. (2). This gives, on each day t, the probability of the next 
day, Δt = 1 d, being a high risk day, which is 1 − PPoisson(0|λ(t)), that is, 

Phighrisk(t) = 1 − e− λ(t)Δt . (3)  

The model predicts that the next day, t+ 1, will be a high risk day if 

Phighrisk(t) > Pthreshold. (4)  

3. Results 

The Hawkes process model parameter estimation was performed for 
the training data (years 2011-2017) at all 40 beaches in the BCRS 
database. The parameter estimation process converged at only 8 of the 
40 beaches. They were located in a geographic cluster (see Fig. 1) and 
from north to south are Manatee, Coquina, Lido, Siesta, Nokomis, Venice 
North, Venice, and Manasota. The set of parameters are calculated 
independently for each beach, and reported in Table 2. 

In all the beaches examined, the parameter β ≈ 0.27 d− 1, which 
suggests a correlation time-scale of β− 1 ≈ 3.6 days. A longer probabi-
listic “memory” timescale can be estimated, 

Tm = − log(0.05)/β + 1 (in days), (5)  

which is about 12 days, since a high risk day which happened 12 days 
ago has a contribution of about 5% compared to that of high risk day 
which occurred 1 day ago. Also of interest is that the estimates show that 
α ≈ 0.2 d− 1 for all beaches. This is roughly 103 times the base rate, λ0 ≈

0.005, for each beach, meaning that a single high risk day after several 
low risk days increases the probability of more high risk days by several 
orders of magnitude. 

The wind-based and Hawkes process models were applied to the test 
data at each of the eight beaches for which a convergent Hawkes process 
model was found. For comparison, a persistence model is included as a 
null hypothesis. The persistence model assumes that tomorrow will be 

Fig. 6. Wind-based respiratory irritation model.  

Table 2 
Estimated values of the Hawkes parameters for each of the beaches considered, 
listed north to south. Units of λ0, α, and β are inverse days, d− 1. The bottom rows 
shows the average parameter value (across all beaches) along with the standard 
deviation.  

Beach λ0  α  β  Pthreshold  

Manatee 0.0027 0.2393 0.3151 0.2932 
Coquina 0.0039 0.3181 0.4016 0.3451 
Lido 0.0054 0.1324 0.2332 0.2600 
Siesta 0.0059 0.2370 0.3700 0.3680 
Nokomis 0.0041 0.1039 0.1218 0.3137 
Venice North 0.0058 0.1457 0.1917 0.3211 
Venice 0.0052 0.1449 0.2404 0.2785 
Manasota 0.0049 0.2219 0.3182 0.3350 
Average 0.0047  0.1929  0.2740  0.3143 
(Standard Deviation) (0.0011) (0.072) (0.094) (0.036)  

S.D. Ross et al.                                                                                                                                                                                                                                  
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like today. The results are reported in Table 3. 
For each beach and each model, the accuracy is reported, or the 

percent of days for which the respiratory irritation risk was correctly 
forecast. Also given are the false negative rate (also called the miss rate) 
and the false positive rate. 

Considering only the accuracy, the model which performs the best 
depends on the beach. For the two northern-most beaches and Siesta, the 
Hawkes model is the most accurate. For the four southern-most beaches, 
the wind model performs best. Only at Lido does the simple persistence 
model perform best. But notice that even when a model is the most 
accurate, it might not have the lowest false negative rate, or percent of 
true high risk days that were not predicted. At all but the two northern- 
most beaches, persistence has the lowest false negative rate. At all but 
one beach (Siesta), the wind model has the lowest false positive rate 
(predicting a high risk day which is in fact low risk). 

The self-excitation behavior characteristic of the Hawkes process can 
be seen in the example of Coquina Beach, Fig. 7. 

The probability of the following day being high risk is a function of 
all actual high risk days in the recent past. When the probability exceeds 
the threshold, the model predicts the following day will be high risk day. 
For this beach, the Hawkes model had the highest accuracy. The wind 
and persistence models are shown for comparison. Results for Venice 
Beach are also shown, an example where the wind model had the highest 

accuracy, in Fig. 8. 

4. Discussion 

The BCRS has accumulated a significant amount of data since its 
launch in 2006. In the absence of a more sophisticated first-principles- 
based forecasting system, the historical data could be utilized to pro-
vide a near-term beach-level forecast at the locations considered. For 
forecasting the beach-specific respiratory irritation risk level one day 
ahead of time, all the models perform similarly during the 2018-2019 RT 
respiratory irritation episode, between 75% and 85% accuracy (see 
Table 3). The simple persistence model (tomorrow will be like today) 
does rather well, near 80% accuracy, and at one beach (Lido), was the 
best performer. The wind-based model is the most accurate for half the 
beaches for which a model was developed. All were geographically 
located near each other, in the southern part of Sarasota County. 

Interestingly, the probabilistic self-exciting Hawkes process model, 
which does not contain wind as an input, outperforms the more intuitive 
wind-based model at nearly half of the beaches. Fortuitously, there were 
enough events to get numerical estimates for the parameters of a uni-
variate Hawkes process, but not enough for a multivariate analysis (i.e., 
including wind data). With additional data containing high-risk events, 
adding wind data to the Hawkes process model may be possible. That is, 
a hybrid of the models considered here could potentially improve ac-
curacy, but the amount of historical data available to train the model 
would need to increase significantly. 

Limitations. The given models do not predict when a RT bloom will 
occur, or when a RT respiratory irritation episode will occur at any given 
beach. However, when a RT respiratory irritation episode does begin, 
the models provide a method for forecasting the respiratory irritation 
risk for the next day, based on the recent risk history. 

Data for all 40 beaches goes back only to December 2011. The total 
number of high risk days during the 2,193-day training period ranges 
from a low of zero to a high of 46. Among the eight beaches for which a 
model was developed, high risk days account for only about 1% of the 
training period. This is very little data for which to train a model. With 
more data, the Hawkes and wind models may improve. 

Data from different blooms were lumped together to get enough data 
to train the models. Yet RT blooms are known to be patchy and highly 
variable from bloom to bloom. Thus, the training data may combine 
behavior from different blooms with different dynamics. This is a limi-
tation of the data set used. 

To simplify the modeling, the four-tiered respiratory irritation scale 
was coarsened into a two-tiered risk scale (Table 1). Ideally, respiratory 
irritation could be measured on a continuous scale, using for example 
sensors for automatic cough detection and counting at beaches. 
Modeling of a continuous variable would increase the number of 
available data-driven modeling methods. 

5. Conclusions 

The Beach Condition Reporting System (BCRS) which has been 
operational for over a decade, has accumulated a wealth of data. In 
particular, red tide-induced respiratory irritation levels at individual 
beaches have been reported daily over this time period. The analysis 
performed here provides one of the first reports of the statistics of this 
data set. 

Moreover, beach-level next-day forecasts of the respiratory irritation 
risk were developed on a beach-by-beach basis, if there was enough data 
in the training set for a model to be developed. Training on data from red 
tide respiratory irritation episodes during the time period 2011–2017, 
only eight beaches had enough data for a model to be developed (i.e., for 
parameter values for the probabilistic Hawkes model to converge). Two 
types of models provided a forecast of the respiratory level 24-hours 
ahead of time during the extensive red time bloom of 2018-2019, and 
were compared with a simple persistence model. One model was wind- 

Table 3 
For each beach, the percent of days for which the respiratory irritation risk was 
correctly forecast by each model during the dates shown is reported as the ac-
curacy. Also given are the false negative rate (also called the miss rate) and the 
false positive rate.  

Beach and Time- 
frame 

Model Accuracy False Negative 
Rate 

False Positive 
Rate 

Manatee, 181 days     
2018-Aug-03 to 

2019-Jan-30 
Persistence 77% 44% 16%  

Wind 78% 69% 5%  
Hawkes 80% 42% 13% 

Coquina, 181 days     
2018-Aug-03 to 

2019-Jan-30 
Persistence 75% 46% 18%  

Wind 75% 68% 9%  
Hawkes 78% 44% 14% 

Lido, 239 days     
2018-Jun-06 to 

2019-Jan-30 
Persistence 85% 36% 10%  

Wind 83% 62% 5%  
Hawkes 83% 56% 6% 

Siesta, 237 days     
2018-Jun-08 to 

2019-Jan-30 
Persistence 83% 36% 12%  

Wind 84% 43% 8%  
Hawkes 85% 46% 6% 

Nokomis, 239 days     
2018-Jun-06 to 

2019-Jan-30 
Persistence 80% 44% 13%  

Wind 82% 60% 5%  
Hawkes 74% 65% 14% 

Venice North, 239 
days     

2018-Jun-06 to 
2019-Jan-30 

Persistence 80% 43% 13%  

Wind 81% 61% 6%  
Hawkes 75% 64% 13% 

Venice, 238 days     
2018-Jun-05 to 

2019-Jan-22 
Persistence 79% 47% 13%  

Wind 85% 53% 4%  
Hawkes 78% 59% 11% 

Manasota, 232 days     
2018-Jun-07 to 

2019-Jan-30 
Persistence 81% 43% 13%  

Wind 87% 48% 3%  
Hawkes 78% 57% 11%  
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Fig. 7. For Coquina Beach, Manatee County, Florida, the days of actual high respiratory risk level are shown, and several 1-day forecast models, during the red tide 
respiratory irritation episode that began August 2018. The probability of a high risk day using the Hawkes process model is shown at top. The flat black line 
represents the threshold. When the probability of a high risk day exceeds the threshold, the day is forecast as a high risk day. Otherwise, it will forecast as a low risk 
day. The Hawkes model performs best in this case. The wind-based and persistence models are shown for comparison. 

Fig. 8. Same data as in Fig. 7 but for Venice Beach, Sarasota County, Florida during the red tide respiratory irritation episode that began June 2018. The wind model 
performs best in this case. 
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based, using the current days’ respiratory level and the predicted wind 
direction of the following day. The other model was a probabilistic self- 
exciting Hawkes process model, which used as input the record of the 
recent risk history. 

No single model performed the best at all the beaches. The wind- 
based model performed the best at four of the eight beaches, correctly 
predicting the respiratory risk level an average of 84% of the time. At 
three of the eight beaches, the Hawkes model was the most accurate, 
accurately predicting the next day’s risk level an average of 81% of the 
time. At one beach, the persistence model outperformed both the wind 
and Hawkes models, with an accuracy of 85%. The accuracy of the 
Hawkes process model at nearly half the beaches for which a model was 
developed suggests it may be fruitful to consider self-excitation-based 
approaches in larger-scale models of harmful algal blooms. Interest-
ingly, the Hawkes process model does not require water samples of 
K. brevis, nor ocean or wind forecasts, and will likely improve by their 
inclusion. 

These results suggest that beach-level on-site reports of respiratory 
irritation are a valuable data source, providing an excellent means to 
forecast the following day’s beach-specific respiratory irritation risk at 
the same location. Moreover, the efficacy of the BCRS suggests that 
timely and regular reports of red tide-induced respiratory irritation level 

should continue to be supported and should be incorporated in opera-
tional forecasts used by resource managers and the public. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We thank the Mote Marine Laboratory & Aquarium, the Florida Fish 
and Wildlife Conservation Commission, the Sarasota County Beach Pa-
trol, the Manatee County Department of Public Safety, the Marine 
Rescue Division, and all of the beach lifeguards, park rangers, and citi-
zen scientists responsible for providing data into the Beach Conditions 
Reporting System. This project was partially supported by the Global 
Change Center, the Fralin Life Sciences Institute, and the Institute for 
Society, Culture, and Environment at Virginia Tech. Moeltner also ac-
knowledges partial support by the USDA/NIFA Multi-State project #VA- 
136344. Ross acknowledges partial support by the National Science 
Foundation (NSF) under grant number 1922516.  

Appendix A. Example Hawkes process 

A homogeneous Poisson process (with constant rate λ = 1) is shown in the bottom of Fig. A.9. The Hawkes process by contrast is a type of non- 
homogeneous Poisson process, in which the rate of events are dependent upon the history of arrivals and the time which has passed between events. 
The probability of seeing a new event, e.g., a high risk day, increases when a previous event has occurred. This leads to the temporal clustering seen in 
the middle panel of Fig. A.9. A more detailed description of a Hawkes process is provided in Section 2.5. 

Appendix B. Hawkes maximum likelihood estimation 

The parameters α, β, λ0, and Pthreshold may be estimated via maximum likelihood estimation (MLE). The log-likelihood function of the Hawkes 
process is given by Ozaki (1979): 

Fig. A1. The varying rate of an example Hawkes process can be seen (top). A Hawkes process (middle) tends to have events which cluster in time, whereas a Poisson 
process with the same initial rate (bottom) produces events that are roughly equally spaced in time. The Hawkes process proves to be a good model for many natural 
processes, which also tend to have events which cluster in time. 
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L (τ1, ..., τn|α, β, λ0) = − λ0T +
∑n

i=1

α
β
[
e− β(T − τi) − 1

]
+
∑n

i=1
log(λ0 +αA(i)), (B.1) 

where T is the total time which has been recorded, 

A(i) =
∑

τi>τj

e− β(τi − τj) (∀i ≥ 2) (B.2)  

and τn is the time of the last recorded event. One may find the partial derivatives of the log likelihood function given in Eq. (B.1) in Ozaki (1979). 
However, estimation of the maximum (by setting the partial derivatives equal to zero and solving) is challenging. So as an alternative, standard 
numerical techniques for nonlinear optimization can be used, in this case the Nelder-Mead direct search technique (Nelder and Mead, 1965) to es-
timate the parameters. 
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