
Submitted 1 February 2018
Accepted 28 August 2018
Published 26 September 2018

Corresponding author
David G. Schmale III,
dschmale@vt.edu

Academic editor
Michael LaMontagne

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj.5663

Copyright
2018 Pietsch et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Wind-driven spume droplet production
and the transport of Pseudomonas
syringae from aquatic environments
Renee B. Pietsch1, Hinrich Grothe2,3, Regina Hanlon2, Craig W. Powers4,
Sunghwan Jung5, Shane D. Ross5 and David G. Schmale III2

1Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA,
United States of America

2 School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University
(Virginia Tech), Blacksburg, VA, United States of America

3 Institute of Materials Chemistry (E165), TUWien, Vienna, Austria
4Civil and Environmental Engineering, Virginia Polytechnic Institute and State University (Virginia Tech),
Blacksburg, VA, United States of America

5Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University (Virginia Tech),
Blacksburg, VA, United States of America

ABSTRACT
Natural aquatic environments such as oceans, lakes, and rivers are home to a
tremendous diversity ofmicroorganisms. Somemay cross the air-water interface within
droplets and become airborne, with the potential to impact the Earth’s radiation
budget, precipitation processes, and spread of disease. Larger droplets are likely to
return to the water or adjacent land, but smaller droplets may be suspended in
the atmosphere for transport over long distances. Here, we report on a series of
controlled laboratory experiments to quantify wind-driven droplet production from
a freshwater source for low wind speeds. The rate of droplet production increased
quadratically with wind speed above a critical value (10-m equivalent 5.7 m/s) where
droplet production initiated. Droplet diameter and ejection speeds were fit by a
gamma distribution. The droplet mass flux and momentum flux increased with wind
speed. Two mechanisms of droplet production, bubble bursting and fragmentation,
yielded different distributions for diameter, speed, and angle. At a wind speed of about
3.5 m/s, aqueous suspensions of the ice-nucleating bacterium Pseudomonas syringae
were collected at rates of 283 cells m−2 s−1 at 5 cm above the water surface, and at
14 cells m−2 s−1 at 10 cm above the water surface. At a wind speed of about 4.0 m/s,
aqueous suspensions of P. syringae were collected at rates of 509 cells m−2 s−1 at 5 cm
above the water surface, and at 81 cells m−2 s−1 at 10 cm above the water surface.
The potential for microbial flux into the atmosphere from aquatic environments was
calculated using known concentrations of bacteria in natural freshwater systems. Up
to 3.1 × 104 cells m−2 s−1 of water surface were estimated to leave the water in
potentially suspended droplets (diameters <100 µm). Understanding the sources and
mechanisms for bacteria to aerosolize from freshwater aquatic sources may aid in
designing management strategies for pathogenic bacteria, and could shed light on how
bacteria are involved in mesoscale atmospheric processes.
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INTRODUCTION
Terrestrial environments are estimated to release between 40 and 1,900 Gg bacteria
per year (Burrows et al., 2009). Microorganisms also aerosolize from aquatic surfaces in
freshwater and saltwater aquatic environments, but little is known about the abiotic
and biotic processes that govern aerosolization from these environments (Blanchard,
Syzdek & Weber, 1981; Gantt & Meskhidze, 2013; Lewis & Schwartz, 2004; Veron, 2015).
Water surfaces produce droplets that contain microorganisms, liberating microorganisms
(Baylor & Baylor, 1980) into the atmosphere where they may be involved in atmospheric
processes, including cloud formation as cloud condensation nuclei (Dinger, Howell &
Wojciechowski, 1970; Park et al., 2014) or ice nuclei (Baldy & Bourguel, 1987; Baylor et
al., 1977; Bigg & Leck, 2008; Blanchard & Woodcock, 1957; Blanchard, 1989; Morris et al.,
2014). Aerosolized microorganisms can also affect the earth’s radiation budget (Gabric
et al., 2005; Haywood, Ramaswamy & Soden, 1999; Park et al., 2014) and disease spread
(Polymenakou, 2012). Once airborne, microbes can be carried through the atmosphere
over great distances (Schmale III & Ross, 2015). Marine algae and diatoms have been
reported 160 km downwind from the sea coast in rime frost on top of Mt. Washington in
New Hampshire (Baylor & Baylor, 1980). Approximately 10% of microbes in the boundary
layer at a given time were still airborne four days later giving them the potential to travel
up to 11,000 km before deposition (Mayol et al., 2014).

Microorganisms are released from aquatic environments inside small droplets, which
are described as fluid volumes bound by immiscible interfaces characterized by an
interfacial tension (Fernando, Bourouiba & Bush, 2012). Droplets are produced by several
mechanisms including bubble bursting and spume droplets tearing off of breaking waves by
fragmentation (Wu, 1981). In bubble bursting air bubbles rise and burst at the sea surface
producing film and jet droplets which enter the atmosphere (Baldy & Bourguel, 1987;
Blanchard, 1989; O’Dowd & De Leeuw, 2007; Sellegri et al., 2006; Wu, 1981). Bubbles form
predominantly from breaking waves as air is entrained into the surface of the water column
producing bubbles (Bigg & Leck, 2008; Blanchard, 1989; Blanchard & Woodcock, 1957). As
these bubbles rise regions of foam format the surface calledwhitecaps. Strongwinds increase
wave-breaking (whitecaps) and fragmentation bubble production (Blanchard & Woodcock,
1957). Near-surface wind speed increases with height, and is commonly reported at the
reference height of 10 m above the water surface (Mueller & Veron, 2009a; Ovadnevaite et
al., 2014). Breaking waves form at wind speeds of U10= 3–4 m/s (Blanchard, 1989; Hanson
& Phillips, 1999; Monahan & Muircheartaigh, 1986). Whitecap coverage increases rapidly
with more than approximately the third power of wind speed (Blanchard, 1989). Several
factors influence the relationship between whitecap coverage and wind speed including
wind history (Callaghan et al., 2008). Bubble bursting is considered the primary means of
microbial aerosolization from aquatic surfaces (Blanchard, 1989). Fragmentation droplets
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only form at higher wind speeds, while bubble bursting droplets are smaller and occur
at high and low wind speeds (Andreas, 2002; Monahan et al., 1983; Wu, 1981). Due to a
combination of smaller vertical angle and larger droplet size, fragmentation droplets tend
to fall back into the water quickly limiting their potential for aerosolization (Wu, 1981).

The size distribution of bubbles in the water and at the water surface has been
characterized (Cipriano & Blanchard, 1981; Spiel, 1998), as well as the relationship between
bubble size and the number, size, ejection speed and ejection height of droplets (Blanchard,
1989; Cipriano & Blanchard, 1981; Spiel, 1995). Size distributions for droplets have been
studied as well (Spiel, 1994). Estimates of production flux based on fragmentation droplets
(spume droplets) have been proposed (Mueller & Veron, 2009b).

A variety of experimental methods and modeling approaches have been used to study
droplet production. Thesemethods include holography and photography techniques (Koga,
1982; Leifer, De Leeuw & Cohen, 2000; Resch, Darrozes & Afeti, 1986), field experiments
(Wu, Murray & Lai, 1984), and laboratory experiments with a wind wave tank (DeMott
et al., 2016; Koga, 1981; Veron et al., 2012). Droplet production has been modeled from
a simulation tank (Monahan, Davidson & Spiel, 1982) and a numerical model has been
developed (Andreas, 1998). Several of the experimental studies have focused on artificial
methods of generating bubbles, such as entraining air to produce bubbles (Cipriano
& Blanchard, 1981; Wu, 1989), plunging waterfalls (Stokes et al., 2013), and use of a
continuous plunging jet (Salter et al., 2014). Bubble bursting has been studied with porous
glass or metal frits (Mårtensson et al., 2003). Research to examine fragmentation droplets,
and the relative contributions from the two mechanisms together, is lacking. A model for
fragmentation droplet generation was compared to a model based on field experiment
observations and another based on wind wave tank observations (Wu, 1993). The three
models showed considerable variability and wide discrepancies indicating fragmentation
droplets are not well understood and further characterization is necessary.

Bubble population at the air-water interface controls the flux of aerosol into the
atmosphere (Baldy & Bourguel, 1987; Salter et al., 2014). The surface microlayer is enriched
with microorganism effecting aerosolization and increasing the amount of bacteria
that can aerosolize (Cunliffe et al., 2012). Bacterial aerosol emissions from sea water
have been studied in a laboratory simulation looking at the quantity, type, and size of
bacteria (Fahlgren et al., 2015; Hultin et al. 2010). Global aerosols from the ocean have
been estimated between 1,300–3,300 Tg/yr (Andreae, 1995; De Leeuw et al., 2011). The
atmospheric boundary layer contains an estimated 6× 104 to 1.6× 107 microbes m−2

of ocean (Mayol et al., 2014), but not all of these microbes necessarily aerosolized from
the ocean; they may have aerosolized from other sources. Better estimates of the aerosol
production rate—specifically how wind speed influences the aerosolization rate—would
be helpful in estimating the impact of aerosolized microorganisms. The global average
10-m wind speed over the ocean is 6.6 m/s; that over the continents (including inland
aquatic sources) is 3.3 m/s (Archer & Jacobson, 2005). Microorganisms range widely in
size; bacterial cells are typically 0.3 to 10 µm (Cole & Cook, 1998). Small bacteria dominate
in surface waters, such as the bacterium Pseudomonas syringae, which has dimensions
of 1–5 µm × 0.5–1.5 µm (Monier & Lindow, 2003). Microorganisms cross the air-water
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interface in droplets, thus studying droplet production can give a better understanding
of microbial aerosolization from aquatic environments. Bubble bursting droplets and
fragmentation droplets have mostly been studied separately.

Here, we simulated the action of the wind on an aquatic system, and characterized the
droplets produced, in terms of diameter, ejection velocity and angle, as a function of both
wind speed and production mechanism (bubble bursting or fragmentation; see Fig. 1).
Experiments were conducted with aqueous suspensions of P. syringae to determine the
number of cells transported at different heights (5 and 10 cm) under different wind speeds
(3.5 and 4 m/s). We considered a range of 10-m wind speeds consistent with the global
mean wind speeds (Archer & Jacobson, 2005), including the lowest wind speeds above the
critical value necessary for wave-induced aerosolization of droplets. We hypothesized
that the characteristics of the ensemble of droplets produced change with wind speed,
specifically, the droplet production number flux and mass flux are zero below a critical
wind speed and beyond the critical value they increase with wind speed. Moreover, we
hypothesized that the certain characteristics of the droplet ensemble may be well fit
by an analytical distribution. Droplet characteristics can then be used to calculate the
production mass flux and aerosolization potential for bacteria, such as P. syringae, from
aquatic environments. Desai et al. (2009) reported an increasing trend of stronger surface
winds (based on comparisons of land and lake (buoy) measurements) across the largest
freshwater lake in the world (Lake Superior, about 0.22 m/s increase in surface wind speed
per decade since 1985). New information is needed on the sources and mechanisms for
bacteria to aerosolize from freshwater aquatic sources, particularly in the context of climate
change and extreme weather. Such efforts could shed light on how bacteria originating
from aquatic sources may be involved in mesoscale atmospheric processes.

METHODS
Flume design for imaging experiments (Flume A)
The flume for imaging experiments (Flume A) was constructed from 0.635 cm width
Plexiglas with inner dimensions of 90.2 cm × 3.2 cm × 34.3 cm, as shown in Fig. 2A. The
flume was a closed system with one 1.27 cm diameter inlet pipe reaching to the surface of
the water and one 1.27 cm diameter outlet pipe exiting near the water surface. The inlet pipe
had a nozzle shape designed to direct water away from the side of the flume minimizing
droplets landing on the flume side. The flume was filled with deionized water to a height of
9.8 cm. Experiments were conducted at ambient room temperature. The flume outlet was
connected to a vacuum that pulled air across the water surface simulating wind moving on
the water surface. The vacuum was controlled with a 5 Amp FS-5F single pole 120 V rotary
dimmer switch (Lutron, Coopersburg, PA, USA). A 29 series II multimeter (Everett, WA,
USA) with a resolution of 0.1 V and accuracy of ±1% was used to measure the voltage
of the dimmer switch. A EA-3010 anemometer (LaCrosse Technology, La Crosse, WI,
USA) with a resolution of 0.1 m/s was used to measure wind speed. The wind speed U
was measured at z = 2.5 cm above the water surface and on the downwind edge of the
camera’s field of view. Measured wind speeds were nearly identical (and thus stable) up
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Figure 1 High speed images recorded at 6,250 fps. Series of high speed images recorded at 6,250 fps
(i.e., 0.00016 s between frames) showing (A) bubble bursting droplet formation and (B) fragmentation
droplet formation. The wind direction is to the right. Each series shows four images 10 frames apart. The
sub-surface bubble in the first frame of (A) produces droplets seen in the third frame. The ligament iden-
tified in the second frame of (B) breaks up into droplets. See the video version at the following URL: https:
//youtu.be/lGZmx4h0yMA. (C–D) Probability distributions for droplet diameter (D), droplet ejection
speed (V ), and ejection angle at wind speeds U = 3.5 and 4.0 m/s (measured at 2.5 cm above water sur-
face) for bubble bursting droplets (blue) and fragmentation droplets (red). The downwind direction is
zero degrees and the radial increments are 0.05 on a relative scale. For 3.5 m/s, bubble and fragmentation
droplets have population sizes n= 26 and n= 33, respectively. For 4.0 m/s, the population numbers are n
= 57 and n= 221, respectively.

Full-size DOI: 10.7717/peerj.5663/fig-1

to a distance of 40 cm downwind from the inlet nozzle (well beyond the viewing window
of the camera) for flume flow rates of 3.0 m/s. At distances greater than 40 cm from the
inlet nozzle, the windspeed increased up to a factor of three at the outlet (located 60 cm
downwind from the inlet). Consequently, the flume demonstrated spatially uniform (or
non-accelerating) flow of near constant velocity near the water surface, within the viewing
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Figure 2 Schematic of flumes used in laboratory experiments. Schematic showing the experimental
design of Flume A for imaging experiments (A) and Flume B for experiments to monitor the transport of
P. syringae (B). For Flume A, the camera viewed an area of 6.6 cm by 4.1 cm at the air-water interface. For
both flumes, the air outlet was connected to a vacuum which pulled air across the water surface and the air
inlet allowed air to enter the system.

Full-size DOI: 10.7717/peerj.5663/fig-2
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window of where the wind-driven spume droplets were observed by the camera. The outlet
valve to the vacuum was adjusted until the anemometer fluctuated by ±0.2 m/s of the
target speed. After an initial calibration was made, the wind speed was controlled only with
the multimeter. A SpectroLED-14 light (Genray, New York, NY, USA) was placed behind
the flume. A Photron FASTCAM Mini UX100 camera (Photron, San Diego, CA, USA)
with a micro-Nikkor 105 mm f/28 lens (Nikon, New York, NY, USA) was used to record
video data at 6250 frames per second (0.16 ms between frames) in 0.9 s increments with a
resolution of 1,280 × 800 pixels. The camera field of view was 6.6 cm of length by 4.1 cm
of height. The resolution was 52 µm per pixel. The depth of field allowed the entire 3.8 cm
width of the flume to be in focus. Videos were captured at four wind speeds (U = 3.5 m/s,
4.0 m/s, 4.5 m/s and 5.0 m/s). At 3.5 m/s, 12 video increments were recorded on 2 days
(n= 122). At 4.0 m/s, 12 video increments were recorded on 4 days (n= 563). At 4.5, m/s
four video increments were recorded on 2 days (n= 672). At 5.0, m/s 3 video increments
were recorded on 2 days (n= 771). Assuming a power-law for the wind profile (Etkin,
1981), we have U10/U = (z10/z)α where U is the wind speed measured at height z (in
m) above the water surface, and U10 is the wind speed at the reference height z10= 10 m.
While there is significant uncertainty in the exponent α, which depends on atmospheric
stability, surface roughness and nearby obstacles, we use a value of 0.1 which is appropriate
for near-neutral conditions over a large body of water (Hsu, 1988). We did not account for
any potential wall effects of our narrow flume (Williams, 1970).

Flume design for transport experiments for aqueous suspensions of
P. syringae (Flume B)
The flume initially designed for the imaging experiments was modified (Flume B) to
allow for a series of transport experiments with aqueous suspensions of P. syringae. Inner
dimensions of Flume B were 90.2 cm × 3.2 cm × 34.3 cm. A droplet-sampling trap
(v-shaped with a horizontal inlet) was used to capture cells of P. syringae from an aqueous
suspension in the flume. The orifice of the trap had a diameter of 1.27 cm, and the inlet was
4 cm long,measured from the center of the trap (Fig. 2B). The trap was designed to be 56 cm
tall, to prevent droplets from reaching the top end due to precipitation and deposition
at the walls. When the trap was installed for experiments with P. syringae, additional
turbulence was introduced in the system. Therefore, all wind speed measurements for the
P. syringae experiments were conducted without the trap installed. At the top of the trap
tube, a flexible hose of 0.64 cm diameter connected the tube to an impinger filled with
20 ml of 0.2 µm filter sterilized water. A vacuum was used to pull air through the impinger,
and was controlled by a valve on the vacuum line to achieve a steady flow rate. The trap
system was surface sterilized with 70% ethanol prior to each experiment. Two different
trap extension lengths allowed sampling at two different heights, 5 and 10 cm above the
suspension of P. syringae in the flume. All parts of the trap system were rinsed with 1 ml
wash of sterile distilled water to test for any bacteria deposited on the different pieces of
the trap.
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Image analysis with Flume A
Video images were converted to black andwhite. The centroid and the centroid trajectory of
each droplet were found across a stack of images. Diameters of the droplets were determined
from the pixel area of the centroid data using the mean of the first ten images to minimize
error due to small variations. Variation in the estimated diameter across imageswas typically
±5%, increasing to±15% for the smallest resolved diameters (52 µm). Ejection speed was
determined from the droplet centroid displacement between images, as near as possible to
the point of ejection from the water surface. Variation in the estimated speed, determined
by the standard deviation in speed estimates across ten images, was ±5%. The angle of the
droplets was determined from a line tangent to the droplet trajectory as near as possible to
the point of ejection from the water surface, to reduce error due to droplet movement being
affected by the wind. Variation in the estimated angle, based on limits of resolution, was
±2 degrees. Droplets were categorized according to the mechanism of droplet production
according to visual inspection of the videos, as in Fig. 1: bubble bursting, fragmentation,
or unknown. Droplets were classified as ‘unknown’ if the moment the droplet first appears
was not caught in the field of view. At U = 3.5 and 4.0 m/s, the populations of droplets
from the bubble bursting and fragmentation mechanisms were large enough (n> 20 in
each group) for the two populations to be compared.

Gamma distribution fit
Gamma distribution for diameters D, is given by the probability distribution function,

p(D)=

(
D
θD

)kD−1
e−

(
D
θD

)
θD0(kD)

where the shape variable is kD = 〈D〉2/σ 2
D, the scale variable is θD = σ

2
D/〈D〉, and 0(·)

is the gamma function. This gamma distribution has mean 〈D〉 and variance σ 2
D. As a

pre-processing step to remove significant outliers, we binned the diameters and considered
only diameters up to a cutoff diameter, the minimum diameter bin with a number of
elements less than 0.02 nmax, where nmax is the number of elements in the bin with
the maximum number of elements. The same procedure was followed for the gamma
distribution of velocity, yielding the shape variable kV = 〈V 〉2/σ 2

V and the scale variable
θV = σ

2
V /〈V 〉.

Experiments with P. syringae in Flume B
A 3L suspension of P. syringae (ice+ BAV strain #892 (Pietsch et al., 2015)) was diluted
from a 4 mL liquid culture grown overnight (12–14 h) at 22 ◦C in R2 broth (3.15 g/L R2
broth, TEKnova #R0005, Hollister, CA 95023) (Reasoner & Geldreich, 1985). This starting
culture was first diluted to an optical density of 0.2 at 600 nm. Control R2A plates were
spread with 0.020 mL of a 1 × 10−6 dilution of the starter culture to confirm CFU in a
countable range of 20–100 colonies per plate. For each flume experiment, a starter culture
(optical density of 0.2 at 600 nm, corresponding to a range of 1,000 to 5,000 CFU per mL)
was diluted in 10 mM MgSO4 to make 3 L of an aqueous suspension of P. syringae which
was added to the flume. This aqueous suspension (flume solution) was used to fill the
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flume to a height of 9.66 cm, corresponding to a water volume VPsyringae= 2.7 L. Growth
of P. syringae was determined by CFU counts on two types of agar plate, R2A (R2 broth
made with 15% agar (Fisher 9002-18-0)) and KBC (Kings B medium with 15 g/L proteose
peptone, 1.5 g/L anhydrous K2HPO4, 10 mL/L 100% glycerol, 6 mMMgSO4) with 24 mM
H3BO3, cephalexin (10 mg/L), and cycloheximide (50 mg/L) (Mohan & Schaad, 1987)).
Samples were plated in triplicate and colonies were counted and reported as mean CFU
per mL plated. Experiments were conducted with aqueous suspensions of P. syringae to
determine the number of cells being transported at different heights (5 and 10 cm) under
different wind speeds (3.5 and 4 m/s).

Experimental parameters for height and wind speed were held constant for each
experimentwith a trap collection time of 30min (1,800 s). Trap collectionswere sequentially
carried out in triplicate. For each 30-minute trap collection, 20 mL of sterile water was
loaded into the 50 mL impinger apparatus. Prior to trap collections, 0.10 mL of the flume
solution was plated in triplicate on R2A and KBC to obtain tank start values for P. syringae.
Tank start values were determined for each experiment. Following trap collections, the
same plating scheme was carried out for Aerosol Experiments 1, 2, and 4. The end tank
aliquot for Aerosol Experiment 3 was not collected. For each 30-minute trap collection,
volumes were recovered and 0.10 mL plated in triplicate on R2A and KBC plates. For
collected trap volumes less than 2.0 mL, an aliquot of 0.50 mL sterile water was used to
rinse the trap. This volume change was calculated as a dilution when determining CFU/mL
values for the trap collections in Aerosol Experiment 2 and 4. For each experiment, the
three impinger collections were combined and concentrated by filtration through a 0.2 µm
filter, followed by an immediate resuspension in 5 mL of sterile filtrate via a 10-minute
filter spin in a sterile 100 mL bottle. The combined impinged resuspension was plated in
0.20 mL aliquots in triplicate on R2A and KBC plates.

RESULTS
Rate of droplet production
Rate of droplet production, Fd , in m−2 s−1 of water surface was related to wind speed, U
in m s−1, measured at z = 2.5 cm above the water and related to equivalent wind speeds,
U10, at 10 m above the water surface (Fig. 3A and Table 1). The data fit a second order
polynomial, Fd = κ(U −Uc)

2, for constant parameters κ in s m−4 andUc determined from
a non-linear curve fit, with an R2

= 0.97 (it should be noted, however, that this is based on
only four windspeeds tested in our study). A critical threshold wind speed ofUc = 3.15m/s
at 2.5 cm height (or equivalently U10c = 5.7 m/s at 10 m height) was determined, below
which there is no droplet production.

Distributions of droplet diameter, speed, and angle
Average and variance of droplet diameter, D, increased with wind speed; more small and
large droplets are produced as well as the largest drop size (Dmax≈ 5.0 mm forU = 3.5 m/s
and Dmax ≈ 8.8 mm for U = 5.0 m/s). Probability distributions were best fit with a
gamma distribution (Fig. 4 and Table 2), calculated from the average 〈D〉 and variance
σ 2
D=

〈
(D−〈D〉)2

〉
which provide the shape parameter, kD, and scale parameter, θD. A log
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speed based on experimental data (filled symbols and solid lines) and from the gamma distribution fits
for diameter (open symbols and dashed lines) for five grouping of the droplets based on droplet diameter
D (>1,000 µm, 200–1,000 µm, 100–200 µm, and<100 µm). For the>1,000 µm droplets, the gamma
distribution does not hold. For the 200–1,000 µm and 100–200 µm groupings, the experimental and
gamma distribution data points are nearly on top of each other in this figure.

Full-size DOI: 10.7717/peerj.5663/fig-3

Table 1 Drops per time and area. The number of drops total and the seconds of video recorded along
with the average number of droplets m−2 s−1 of water surface at each of the four wind speeds.

Wind speed
U (m/s)

Wind speed at
10 m,U10 (m/s)

Number of
droplets

Total video
time (s)

104 droplets m−2 s−1

3.5 6.4 122 10.8 0.45
4.0 7.3 563 14.4 1.55
4.5 8.2 672 3.6 7.42
5.0 9.1 771 2.7 11.4

Table 2 Parameters for droplet diameter and ejection. Parameters for the distribution of droplet diameter D and ejection speeds V at each of the
four wind speeds (U at 2.5 cm height and U10, the equivalent at 10 m), including average 〈D〉, variance σ 2

D, average 〈V 〉, variance σ
2
V , and the shape

k, and scale θ parameters for the gamma distribution for each, as well as the R2 of the gamma distribution fit.

U (m/s) U10 (m/s) 〈D〉 (µm) σ2
D (µm)2 kD θD R2

D 〈V 〉 (m/s) σ2
V (m/s)2 kV θV R2

V

3.5 6.4 387 74,900 2.00 194 0.97 1.33 0.544 3.28 0.407 0.94
4.0 7.3 406 94,100 1.76 231 0.94 1.63 0.781 3.41 0.479 0.94
4.5 8.2 471 121,000 1.85 256 0.96 1.62 0.723 3.64 0.446 0.94
5.0 9.1 525 158,000 1.74 302 0.97 1.55 0.601 4.02 0.387 0.96
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Figure 4 Probability distributions of droplet diameter at each of the four wind speeds ((A–D)U =
3.5, 4.0, 4.5, and 5.0 m/s) with a gamma distribution fit (curve), with parameters as given in Table 2.

Full-size DOI: 10.7717/peerj.5663/fig-4

normal distribution (not shown)was also fit to the data (Kolmogorov, 1962;Oboukhov, 1962;
Novikov & Dommermuth, 1997), but the gamma distribution was a better representation
of the experimental data, giving lower error (having a higher R2) (Beck & Cohen, 2003;
Villermaux, Marmottant & Duplat, 2004). Average droplet diameter and variance generally
increased with wind speed. Probability distributions for droplet ejection speed, V , at each
wind speed also showed a good fit to a gamma distribution (Fig. 5 and Table 2). Probability
distributions for the droplet angle for the four wind speeds are given in polar plot form in
Fig. 5, where zero degrees is the downwind direction. We see a wider distribution in angle
for U = 3.5 and 4.0 m/s compared to U = 4.5 and 5.0 m/s.

Distributions of diameter, speed, and angle for bubble bursting and
fragmentation droplets
Bubble bursting droplets were observed for 21% (26/122), 10% (285/563), 0.3% (2/672),
and 0% (0 out of 771) of the droplets observed at U = 3.5, 4, 4.5 and 5 m/s, respec-
tively. Droplet data at the lowest wind speeds, 3.5 and 4.0m/swere presented in categories of
bubble bursting or fragmentation based on the observed mechanism of droplet production
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Figure 5 Probability distributions of droplet ejection speed V at each of the four wind speeds ((A–D)
U = 3.5, 4.0, 4.5, and 5.0 m/s) with a gamma distribution fit (curve), with parameters as given in Table
2. The inset for each wind speed is a polar plot of probability distribution for droplet ejection angle. The
radial increments are 0.05 on a relative scale. The downwind direction is zero degrees.

Full-size DOI: 10.7717/peerj.5663/fig-5

(Figs. 1A–1B).Diameter and speed of bubble bursting and fragmentationdroplets indicated,
in general, that fragmentation droplets had a wider distribution while the bubble bursting
droplets had a narrower distribution, centered around smaller diameters (Figs. 1C–1D).
Polar plots for the angle distributions of bubble bursting and fragmentation droplets
indicated the bubble bursting droplets in general were between 20◦ and 100◦, while the
fragmentation droplets were between −40◦ and 70◦. We were not able to determine the
mechanism of production for a majority of the droplets at higher wind speeds, due in part
to the noise of droplet splatter on the flume surface. We observed fewer bubble bursting
droplets at higher wind speeds, but this may be due to the inability to distinguish bubbles
in our experimental set up at higher speeds.
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Droplet production mass flux
Mass flux ranged from 8.7 ×10−5 g m−2s−1 for droplets with diameters D< 100 µm at
U = 3.5 m/s to 200 g m−1s−2 for droplets with D> 1,000 µm at U = 5.0 m/s. Mass flux of
droplets in each size range (D < 100 µm, 100 µm < D < 200 µm, 200 µm < D <1,000 µm)
increased two orders of magnitude with wind speed from 3.5 to 5.0 m/s (Fig. 3B). Mass flux
calculated from the gamma distribution showed a good fit with the mass calculated from
the experimental data, over the range of diameters where comparisons could be made,
indicating that the gamma distribution may be used to extrapolate the mass flux of droplets
smaller than the experiment could resolve (D < 52 µm).

Droplet production momentum flux
Given their potential role in atmosphere-water momentum exchange (Veron et al., 2012),
we report the momentum flux for small droplets (those with the potential to be suspended)
as a function of both wind speed and angle (Fig. 6). Values of total momentum flux ranged
from 1.4 × 10−4 g m−1s−2 for droplets with diameters D< 100 µm at U = 3.5 m/s to
4.6 × 10−2 g m−1s−2 for droplets with diameters 100 µm <D< 200 µm at U = 5.0 m/s.

Observed and estimated transport of P. syringae at different heights
under different wind speeds
The start (beginning of each experiment, prior to flume operation) and the end (end
of experiment, after flume was turned off) concentrations are reported in Table 3. At a
wind speed of about 3.5 m/s, aqueous suspensions of P. syringae were collected at rates of
283 cells m−2 s−1 at 5 cm above the water surface, and at 14 cells m−2 s−1 at 10 cm above
the water surface (Table 3). At a wind speed of about 4.0 m/s, aqueous suspensions of
P. syringae were collected at rates of 509 cells m−2 s−1 at 5 cm above the water surface, and
at 81 cells m−2 s−1 at 10 cm above the water surface (Table 3). These trends correspond
well to the respective volumes trapped at different wind speeds and at different heights.
Increasing the height of the trap (from 5 cm to 10 cm), decreased the trapped volume by
a factor of about 11. This is independent from the wind speed. Increasing the wind speed
from 3.5 to 4.0 m/s increased the trapped volume by a factor of 3–3.2, which is independent
of the height. P. syringae were not found above the trap in the flexible hose.

We estimated the flux of cells emerging out of the tank water surface by multiplying the
total mass production flux by the measured tank cell density. At the 3.5 m/s wind speed,
the total mass production flux is 3.4 g m−2 s−1 and at 4.0 m/s, it is 4.7 g m−2 s−1. Droplets
with diameters exceeding 1000 µm dominate mass production flux at both wind speeds.
Based on these mass production flux values and the measured cell density in the tank at the
start and end, we can estimate the cell surface flux (Table 3). During the duration of the
experiment, the cell density in the tank typically increased by a factor of 2. At the 3.5 m/s
wind speed, the estimated surface flux is higher than the measured 5 cm flux by a factor of
2.5–6.1, and higher than the 10 cm flux by a factor of 93–170. At the 4.0 m/s wind speed,
the estimated surface flux is higher than the measured 5 cm flux by a factor of 1.5–3.3, and
higher than the 10 cm flux by a factor of 26–52.
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Figure 6 Momentum flux as a function of angle for droplets with diameters (A)D < 100µm and (B)
100µm<D< 200µm, at four wind speeds (U = 3.5, 4.0, 4.5, and 5.0 m/s at 2.5 cm height). The radial
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3.5× 10−2, 4.6× 10−2 for the four wind speeds, respectively.

Full-size DOI: 10.7717/peerj.5663/fig-6

DISCUSSION
Though microorganisms are ubiquitous in aquatic environments, little is known about
how they get out of the water and into the air. This study examined the characteristics
of droplets aerosolized from water at four different wind speeds. Looking at the three
parameters together, as the wind speed increases, the diameter range increases, the
angle range decreases, and the droplet speed is relatively unchanged. Rate of droplet
production scales as ∝ (U −Uc)

2. In addition, contributions to droplet production from
two mechanisms—bubble bursting and fragmentation—were examined at the two lowest
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Table 3 Observed and estimated flux of cells of P. syringae at different heights and wind speeds.Observed and estimated transport of cells of
P. syringae at two different wind speeds (3.5 and 4.0 m/s) at two different heights (5 and 10 cm). The surface area between the inlet and the mouth
of the trap was 0.00318 m2; this value was used to compute units of observed flux (cells m−2 s−1). Tank start refers to the concentration of bacteria at
the start of the experiment, and tank end refers to the concentration of bacteria measured at the end of the experiment.

Exp. # Wind
speed
(m/s)

Height Location Trap or
impinger
volume
(mL)

Mean
CFU/mL
R2A

Mean
CFU/mL
KBC

Observed
flux, R2A
(cells/m2/s)

Observed
flux, KBC
(cells/m2/s)

Est.
surface
flux, R2A
cells/m2/s

Est.
surface
flux, KBC
(cells/m2/s)

Exp1 3.5 5 cm Tank start 1.00 207± 8.82 297± 60.09 700 1,004
Exp1 3.5 5 cm Tank end 1.00 493± 67.41 437± 51.57 1,666 1,477
Exp1 3.5 5 cm Trap 1 3.20 363± 28.48 443± 31.80 203 248
Exp1 3.5 5 cm Trap 2 3.50 317± 13.33 313± 92.62 194 192
Exp1 3.5 5 cm Trap 3 6.20 417± 38.44 417± 13.33 451 451
Exp1Mean 4.3± 0.95 366± 28.90 391± 34.72 283 297
Exp2 3.5 10 cm Tank start 1.00 387± 23.33 360± 15.28 1,308 1,217
Exp2 3.5 10 cm Tank end 1.00 697± 61.73 613± 64.38 2356 2,072
Exp2 3.5 10 cm Trap 4 0.52 253± 20.04 199± 15.58 23 18
Exp2 3.5 10 cm Trap 5 0.32 125± 7.2 123± 27.38 7 7
Exp2 3.5 10 cm Trap 6 0.35 199± 6.33 155± 39.49 12 10
Exp2Mean 0.4± 0.06 192± 37.10 159± 22.03 14 11
Exp3 4.0 5 cm Tank start 1.00 300± 11.55 287± 8.82 1,422 1,360
Exp3 4.0 5 cm Tank end 1.00 ND ND ND ND
Exp3 4.0 5 cm Trap 7 10.50 193± 12.02 200± 15.28 355 367
Exp3 4.0 5 cm Trap 8 15.00 217± 12.02 177± 17.64 568 463
Exp3 4.0 5 cm Trap 9 16.00 217± 43.33 140± 36.06 606 391
Exp3Mean 13.83± 1.69 209± 8.00 172± 17.48 509 407
Exp4 4.0 10 cm Tank start 1.00 373± 17.64 397± 34.8 1,768 1,882
Exp4 4.0 10 cm Tank end 1.00 750± 63.51 537± 63.33 3,555 2,545
Exp4 4.0 10 cm Trap 10 0.58 138± 10.89 116± 6.45 14 12
Exp4 4.0 10 cm Trap 11 1.34 323± 35.01 294± 27.38 76 69
Exp4 4.0 10 cm Trap 12 1.75 506± 4.49 363± 18.7 155 111
Exp4Mean 1.22± 0.34 322± 106.23 258± 73.58 81 64

wind speeds. These compensating factors all combine to influence the droplet-mediated
transport of microorganisms in the atmosphere.

A strong association between droplet production and wind speed was observed, which
is consistent with previous literature (Blanchard & Woodcock, 1957; Mueller & Veron,
2009b; Ortiz-Sunslow et al., 2016; Ovadnevaite et al., 2014). Droplet production increased
quadratically with wind speed above a critical threshold speedUc . This relationship implies
that even small increases in wind speed have the potential to significantly increase the
droplet production and mass emission. The critical threshold observed, equivalent to
U10c =5.7 m/s at 10 m height) below which there is no droplet production is in agreement
with a previous result (Hamilton & Lenton, 1998).

Droplet diameters were well represented by a gamma distribution at all four wind
speeds. Our choice of probability distribution functions is motivated by the field of
turbulence. Previously, Kolmogrov, Laudau, and other researchers developed the idea of
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flow structures in turbulent flows cascading from large to small scales. Below a certain size,
structures are dissipated away. The log-normal distribution was proposed by Kolmogorov
(1962) andOboukhov (1962), and the Gamma distribution was proposed by Beck & Cohen
(2003). Similarly, in the area of shear-induced fragmentation into droplets, log-normal
(Novikov & Dommermuth, 1997) and Gamma (Villermaux, Marmottant & Duplat, 2004)
distributions have been proposed. Droplet diameters have previously been studied (Koga,
1981; Resch, Darrozes & Afeti, 1986; Spiel, 1998) as well as the distribution of bubbles
before bursting (Leifer, De Leeuw & Cohen, 2000). Droplet size distributions fit to Poisson,
gamma, lognormal, exponential curves, and gamma distributions have matched the data
best in previous studies (Villermaux, 2007). Gamma distributions have previously been
seen for droplet diameters in fragmentation; droplets breaking off of ligaments of water
as well as for natural spray (Bremond & Villermaux, 2006; Ling et al., 2017; Villermaux,
Marmottant & Duplat, 2004).

The distribution of droplet speed also showed a gamma distribution (Fig. 5), which to
our knowledge has not been considered previously in the literature. The 3.5 m/s data had
the lowest mean droplet speed with the other three wind speeds showing similar values,
indicating that while wind speed has a substantial effect on other parameters, the effect on
droplet speed is negligible.

At higher wind speeds the distribution of droplet angles was narrower. For the lower
two wind speeds (3.5 and 4.0 m/s) the droplets ranged from below the horizontal (−30◦)
to slightly beyond the vertical (100◦), but at the higher two wind speeds the distribution
was more narrow ranging between 0◦ and 60◦. The three parameters (diameter, speed, and
angle) were compared in every combination of pairs and no correlation was seen between
any of the parameters.

At the two lower wind speeds (U = 3.5 and 4.0 m/s) differences were seen in the angle,
diameter, and speed distributions of bubble bursting droplets and fragmentation droplets,
which could affect aerosolization. A narrower range of both droplet diameters and speeds
was observed for bubble bursting data. The mechanism of formation for bubble bursting
droplets produces droplets within certain parameters while fragmentation droplets have
no upper limit in size (Andreas, 1998). Bubble bursting droplets tend to be ejected closer to
the vertical while the fragmentation droplets are torn off of breaking waves with an angle
directed near the horizontal, downwind direction.

Large droplets, identified as those above a critical diameter Dc (D>Dc), are likely to
fall quickly back into the water (or neighboring land, such as a shore). Small droplets
(D<Dc) are likely to remain suspended in the atmosphere for long periods of time, since
their low settling speeds will be balanced by turbulent updrafts (Cole & Cook, 1998). We
note that droplet aerosols with diameters on the order of 100 µm have been shown to
remain suspended in air for prolonged periods of time, provided their settling speeds are
small relative to turbulent updrafts in indoor conditions (Cole & Cook, 1998; Fernstrom
& Goldblatt, 2013). Moreover, the conditions (e.g., wind speeds and gradients) necessary
for droplet production in aquatic environments are also conditions for significant air
turbulence, including vertical turbulence. Based on a spectral turbulence model (Etkin,
1981), the vertical turbulent velocity is related to the wind at 6 m height via σw ≈ 0.1U6.
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For the wind speeds considered in this study, interpolated to 6 m, we find σw ≈ 0.7 m/s,
which balances the terminal velocity of a water droplet of diameter ≈ 200 µm, based on
experimental results in still air (Gunn & Kinzer, 1949). We therefore consider Dc ≈ 200
µm, which is consistent with previous reports of the maximum suspended drop size for
this range of wind speeds (Mueller & Veron, 2009b).

When droplet production occurs near land, large droplets (D> 200 µm) may spread to
adjacent terrestrial surfaces such as shoreline. Angle, diameter, and speed of the droplet,
combined with atmospheric conditions, determine the probability of a droplet reaching
a given height or horizontal distance. Using a dynamical model along with the measured
droplet initial conditions, we can estimate the width of the ‘splash zone’, the downwind
area adjacent to the body of water that will receive locally released droplets (Fig. 7A), as
well as the mass transfer rate to the splash zone. The drag force on droplets is assumed to
have the form,

Fdrag=−
1
2
CDρS|V −U |(V −U )

where ρ is the density of air, S= π
4D

2 is the cross-sectional area of a droplet, V is the
droplet velocity in a local wind of velocity U which follows the power-law profile assumed
before, and for the drag coefficient CD, we use the form adopted by (Flagan & Seinfeld,
1988) appropriate for spherical aerosols,

CD=
24
Re

(
1+0.15 Re0.687

)
, 2<Re< 500

which is the appropriate range of Reynolds number, Re = VD
ν
, for the droplet dynamics,

where ν is the kinematic viscosity of air.
The splash zone width can be estimated as d95%, the distance from the shoreline where

95% of the total mass transferred from the water to the land is reached. The mass transfer
rate per unit length of shoreline will be based on the 95 percentile mass, and varies with
the wind speed. For the lowest wind speed above critical, 3.5 m/s, we calculate the splash
zone as d95%= 0.428 m and a mass transfer rate of 0.828 g s−1 m−1 of shoreline. The splash
zone increases to d95%= 1.10 m with a mass transfer rate of 139 g s−1 m−1 of shoreline at
5.0 m/s.

In a natural system, droplets may contain microorganisms, which can become
aerosolized as they cross the air-water interface (Morris et al., 2014). Our flume experiments
showed a strong correlation between the mass and volume flux of the droplets and
the number flux of aerosolized P. syringae. When doubling the height of the trap,
the volume collected in the trap decreased by more than an order of magnitude;
while a 14% increase in wind speed resulted in tripling the volume collected. The
same trend is true for the number of bacteria. At a wind speed of about 3.5 m/s,
aqueous suspensions of P. syringae were aerosolized at rates of 283 cells m−2 s−1 at
5 cm above the water surface, and at 14 cells m−2 s−1 at 10 cm above the water
surface. At a wind speed of about 4.0 m/s, aqueous suspensions of P. syringae were
aerosolized at rates of 509 cells m−2 s−1 at 5 cm above the water surface, and at
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Figure 7 Splash zone. (A) The width of the ‘splash zone’, that portion of the downwind shore adjacent to
the body of water that will receive locally released droplets, can be estimated as d95%, the distance from the
shoreline where 95% of the total mass transferred from the water to the land is reached. (B) The potential
for bacteria to move across the air-water interface, given as a bacterial cell flux, qbac , based on the droplet
mass flux at four wind speeds (reported as U at 2.5 cm and U10 at 10 m) and at four different droplet size
ranges, using the reported bacterial concentrations from literature for freshwater lakes (Bird & Kalff, 1984;
Coveney, 1982; Field et al., 1980). For each diameter range, the filled symbols correspond to the high esti-
mate of 1.3×107 cells/mL and the open symbols correspond to the lower estimate of 7.2×104 cells/mL,
with the region between shaded.

Full-size DOI: 10.7717/peerj.5663/fig-7
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81 cells m−2 s−1 at 10 cm above the water surface. There is likely a threshold in droplet
size below which no bacteria are transported anymore, but this was not quantified in our
study.

An estimated concentration of bacteria with the potential of being aerosolized can be
calculated from the droplet flux observed in these experiments. We found that bacteria
fluxes estimated from the production mass flux and mean bacteria density in the tank were
always higher than our measured values (Table 3). In part, this could be due to deposition,
as larger droplets fall back into the fluid, since the estimated flux was at the surface while
the lowest measured surface flux was at a height of 5 cm above the surface.

The concentration of bacteria in a lake may vary from one lake to another and in
different conditions within one lake (Pietsch, Vinatzer & Schmale III, 2017). The total
bacterial concentration in lakes between 0 and 2 m deep ranges between 7.2 × 104 and
1.3× 107 cells/mL (Bird & Kalff, 1984; Coveney, 1982; Field et al., 1980). No known studies
have examined the detailed distribution of taxa across different depths, but concentrations
of ice-nucleating Pseudomonas spp. have been reported for the top 0.2m of a freshwater lake
between 0.11 and 16.24 cells/mL (Pietsch, Vinatzer & Schmale III, 2017). Given the range
of total bacteria concentrations, and the droplet mass flux q we observed, an estimate of
the flux of bacteria moving across the air-water interface, qbac, can be calculated. Figure 7B
shows a low and high estimate based on the range of bacterial concentrations cited above
for five size divisions of droplet size at each of the four wind speeds. The droplets of
diameter D <100 µm are most likely to remain suspended for extended periods and thus
most important to examine in the context of capacity to aerosolize bacteria. At U = 3.5
m/s, 1.2 × 103 cells leave the water m−2 s−1 of water surface; this flux increases to 3.1 ×
104 cells m−2s−1for U = 5.0 m/s, at the upper estimate for bacterial concentration (the
lower bacterial concentration estimate gives 6.3 cells m−2s−1 and 170 cells m−2s−1 at the
two wind speeds, respectively). If we consider slightly larger droplets with diameters 100
µm < D < 200 µmwhich also have the potential to remain suspended, the range goes from
1.9 ×104 cells m−2s−1 at U = 3.5 m/s to 3.6 × 105 cells m−2s−1 for U = 5.0 m/s based on
the upper bacterial concentration estimate (and 100 cells m−2s−1 to 1. 9× 103 cells m−2s−1

using the lower bacterial concentration estimate). Wind speeds are not usually sustained
over the whole surface of a body of water, but are intermittent in nature and spatially
non-uniform. Given these estimated rates of bacterial flux, the potential exists to aerosolize
significant quantities of bacteria, particularly as wind speed increases. Estimates of global
aerosolization taken from terrestrial environment measurements in as a flux of bacterial
cells m−2 s−1 of area are 44 to 206 (Burrows et al., 2009). With >70% of the Earth’s surface
covered in water, aerosolization from aquatic environments has the potential to be a greater
contributor to aerosols than from terrestrial environments. Aller et al. (2005) observed a
15–25-fold enrichment in bacteria during transport from subsurface waters to the surface
marine layer. Further work needs to be done to track the amount of bacteria present in
aerosolized droplets, as it may not be the same as the concentration in the bulk of the water
and is likely higher; concentrations of microorganisms in droplets could exceed the bulk
water concentration by 10 to 100 times (Baylor et al., 1977; Blanchard & Syzdek, 1982).
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CONCLUSIONS
A series of controlled laboratory experiments were conducted to quantify wind-driven
droplet production from a freshwater source for low wind speeds. The rate of droplet
production increased quadratically with wind speed. Droplet diameter and ejection speeds
fit a gamma distribution. Droplet mass flux and momentum flux increased with wind
speed. Two mechanisms of droplet production, bubble bursting and fragmentation,
yielded different distributions for diameter, speed, and angle. At a wind speed of about
3.5 m/s, aqueous suspensions of the ice-nucleating bacterium P. syringae were collected
at rates of 283 cells m−2 s−1 at 5 cm above the water surface, and at 14 cells m−2 s−1 at
10 cm above the water surface. At a wind speed of about 4.0 m/s, aqueous suspensions of
P. syringae were collected at rates of 509 cells m−2 s−1 at 5 cm above the water surface, and
at 81 cells m−2 s−1 at 10 cm above the water surface. Up to 3.1× 104 microbial cells m−2 s−1

of water surface were estimated to leave the water in potentially suspended droplets.
An increased understanding of droplet productionmay inform themovement of a variety

of particles across the air-water interface, and the fate of the particles once they have crossed
the interface. In particular, bacteria can move from the water into the air in droplets. With
the ubiquitous presence and great diversity of microorganisms in the world, with up to 1
trillion species of bacteria (Locey & Lennon, 2015), we are just beginning to understand all
the roles microorganisms play in Earth processes. Some strains of the bacterium P. syringae
express an ice nucleation protein allowing them to raise the freezing temperature of water.
As aerosols in the atmosphere, ice nucleating P. syringae may be involved in precipitation
processes (Sands et al., 1982). Understanding the sources and mechanisms for bacteria to
aerosolize may aid in designing management strategies for pathogenic bacteria, and shed
light on how bacteria could be involved in mesoscale atmospheric processes.
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