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Geometric Approaches in Phase Space Transport and Partial

Control of Escaping Dynamics

Shibabrat Naik

ABSTRACT

This dissertation presents geometric approaches of understanding chaotic transport in phase

space that is fundamental across many disciplines in physical sciences and engineering. This

approach is based on analyzing phase space transport using boundaries and regions inside

these boundaries in presence of perturbation.

We present a geometric view of defining such boundaries and study the transport that occurs

by crossing such phase space structures. The structure in two dimensional non-autonomous

system is the codimension 1 stable and unstable manifolds (that is R1 geometry) associated

with the hyperbolic fixed points. The manifolds separate regions with varied dynamical fates

and their time evolution encodes how the initial conditions in a given region of phase space

get transported to other regions. In the context of four dimensional autonomous systems, the

corresponding structure is the stable and unstable manifolds (that is S1 × R1 geometry) of

unstable periodic orbits which reside in the bottlenecks of energy surface. The total energy

and the cylindrical (or tube) manifolds form the necessary and sufficient condition for global

transport between regions of phase space.

Furthermore, we adopt the geometric view to define escaping zones for avoiding transi-

tion/escape from a potential well using partial control. In this approach, the objective is two

fold: finding the minimum control that is required for avoiding escape and obtaining discrete

representation called disturbance of continuous noise that is present in physical sciences and

engineering. In the former scenario, along with avoiding escape, the control is constrained

to be smaller than the disturbance so that it can not exactly cancel out the disturbances.

The work presented was funded by Virginia Tech and National Science Foundation under
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Geometric Approaches in Phase Space Transport and Partial

Control of Escaping Dynamics

Shibabrat Naik

GENERAL AUDIENCE ABSTRACT

The prediction and control of critical events in engineering systems has been a major ob-

jective of scientific research in recent years. The multifaceted problems facing the modern

society includes critical events such as spread of pathogens and pollutants in atmosphere and

ocean, capsize of boats and cruise ships, space exploration and asteroid collision, to name

but a few. Although, at first glance they seem to be disconnected problems in different areas

of engineering and science, however, they have certain features that are inherently common.

This can be studied using the abstraction of phase space which can be thought of as the

universe where all possible solutions of the governing equations, derived using principles of

physics, live and evolve in time. The phase space can be just 2D, 3D or even infinite dimen-

sional but the critical events manifest themselves as volumes of phase space, which represent

solutions at a given instant of time, get transported from one region to another due to the

underlying dynamics. This mathematical abstraction is called phase space transport and

studied under the umbrella of dynamical systems theory. The geometric view of the solu-

tions that live in the phase space provides insight into the mechanisms of how the critical

events occur, and the understanding of these mechanisms is useful in deciding about control

strategies.

A slightly different view for understanding critical events is to consider a thought experiment

where a ball is rolling on a multi-well surface or potential well. As the time evolves, the ball

will escape from its initial well and roll into another well, and eventually start exploring all

the wells in a seemingly unpredictable way. However, these unpredictable escape/transition

can be studied systematically using methods of chaos and dynamical systems. The es-

cape/transition in a potential well implies a dramatic change in the behavior of the system,



and hence the significance in prediction and control of escaping dynamics. The control as-

pect becomes more challenging due to inherent disturbance in the system that is difficult to

model and we may not have the equal or more control authority to cancel those disturbances.

However, we can usually estimate the maximum values of the disturbance, and try to avoid

escaping from the potential well while using a smaller control. This idea is called partial

control of escaping dynamics and can guarantee avoidance of escape for ad infinitum.

In this doctoral research, we focus on the two mechanisms, phase space transport and es-

caping dynamics, by considering problems from fluid dynamics and capsize of a ship. The

applications are used for numerical demonstration and evidence of the general approach in

studying a large class of problems in classical physics.

The work presented was funded by Virginia Tech and National Science Foundation under

award #1150456 and #1537349.
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4.2.3 Poincaré surface-of-section (SOS) of the energy surface, showing orbits of the

return map for different energy values. In the absence of damping and wave

forcing, the system conserves energy and for energy below the critical value,

Ee, all the trajectories intersect the SOS (4.2.13) as shown in (a) and (b)

for e = 0.22 and e = 0.25. When the energy is above the critical value,

trajectories leading to capsize do not intersect the surface (4.2.13) any longer

and hence less return orbits are shown in (c) . . . . . . . . . . . . . . . . . . 79

4.2.4 (a), (b), and (c) show the Hill’s region for e < Ee, e = Ee, and e > Ee where

Ee denotes the critical energy. The white region is the energetically accessible

region bounded by the zero velocity curve and while the gray region is the

energetically forbidden realm where kinetic energy is negative and motion is

impossible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 Schematic of the globalization of invariant manifolds that computes an approx-

imation of the two branches of the unstable (W u
±) and stable (W s

±) manifolds

of a periodic orbit. The two branches are computed using the positive and

negative directions of the eigenvectors eu(t0) and es(t0), respectively, after an

initial displacement of small magnitude from X0 to X1. Then, the unstable

(stable) manifold is computed using successive forward (backward) iterate of

the map P which marches along the half manifold. . . . . . . . . . . . . . . 89

xix
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Preface

This dissertation was submitted to the Virginia Polytechnic Institute and State University

on 23rd September 2016, as a partial fulfillment of the requirements for the degree of Doctor

of Philosophy in Engineering Mechanics. This dissertation is meant to serve as a research

report on geometric methods for phase space transport in dynamical systems, and prediction

and control of escaping dynamics. The approach is to present the mathematical ideas by

application to archetypical problems from mechanics and engineering, and present numerical

demonstration of the geometric methods.

The overall superstructure of the dissertation is divided into three core chapters that are

kept independent to facilitate publication and some of the content has been submitted to

peer-reviewed journals in slightly modified form. A general introduction to the disserta-

tion’s theme is in the Chapter 1, and the summary of contribution with future directions is

presented in the Chapter 5. The remaining chapters are as follows:

• Chapter 2 has been submitted as S. Naik, F. Lekien, S. D. Ross, Computational Method

for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape,

to Regular and chaotic dynamics

• Chapter 3 is in preparation as S. Naik, S. D. Ross, Partial control of escaping dynamics:

Application to ship roll motion and avoiding capsize, for submission to Proceedings of

Royal Society: A
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• Chapter 4 has been submitted as S. Naik, S. D. Ross, Geometry of Escaping Dynamics

in Nonlinear Ship Motion, to Communications in Nonlinear Science and Numerical

Simulation
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Chapter 1

Introduction

“A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more

permanent than theirs, it is because they are made with ideas.” – G. H. Hardy, A Mathe-

matician’s Apology

In applied mathematics, dynamical systems is concerned with understanding motion given

by a differential equation

ẋ = v (x, t) (1.1)

where, (̇) denotes time derivative, x ∈ Rn are the states or phase space co-ordinates of the

system, v ∈ Rn are the known functions expressed in terms of the states x and time t,

and also known as the vector field. This form of representing the time evolution of states

arises in a myriad of disciplines in physical sciences and engineering, when using iterated

maps or ordinary differential equations (ODE) or partial differential equations (PDE) as

mathematical models, or experiments for observing physical phenomena. In the case of

numerical solution of PDE or experimental data, the smooth representation of v (x, t) can

be obtained by interpolation of the snapshots of vector field. In general, the vector field is
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given by a nonlinear equation and the goal is to understand how the time evolution of the

states, and thus enabling prediction and control. To study such evolution, we resort to the

abstraction of phase space where the states are chosen as the coordinates and we observe

the time evolution as global behavior of the solutions.

As nonlinear systems exhibit finite escape time, multiple equilibria, and multiple modes of

behavior [1], characterizing the global dynamics can become complicated and cumbersome

task. However, with the aid of organizing structures that exist in the phase space, or ex-

tended phase space for non-autonomous systems, we can categorize the trajectories based

on the global behavior [2, 3, 4]. Thus, circumventing the exhaustive search for trajectories

with different fates. This approach also enhances the efficiency of parametric study using

numerical solution, and provides guiding assumptions for analytical derivations. Thus, in dy-

namical systems approach of understanding motion, the objective is to identify the geometric

structures and describe conditions of phase space transport in terms of these structures.

To further elucidate these ideas, we adopt simple clean problems that are related to generic

models of physical phenomena and components that arise in practical engineering systems [5].

In this research report, we adopt the classical problem of ship capsize that fits into this

framework of study.

1.1 Phase space transport and escaping dynamics:

The geometric methods of phase space transport deals with local and global behavior of

transit orbits, invariant manifolds of unstable periodic orbit which separate motions with

distinct dynamical behavior.

Chaotic transport. In this context, the goal for studying chaos enhanced transport is to

understand, forecast, and control the evolution and motion of boundaries that act as barriers

to the phase space volume [6]. These boundaries are defined using the perturbed manifolds
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associated with the saddles in forward time, that is t→∞, and are called unstable manifolds

and those in backward time, that is t → −∞, are called stable manifolds. The regions of

the phase space that lead to crossing of the barriers are formed by segments of unstable and

stable manifolds of hyperbolic fixed points, p±, called lobes [7]. The lobes form atoms of

transport in the sense that global phase space transport can be explained by considering a few

basic forms of lobes and their forward and backward iterates. However, from the perspective

of transport and its rate, we need longer integration times to resolve the manifolds as they

are infinitely stretched and folded due to the hyperbolic nature of the fixed points [6, 4].

This generates a chaotic tangle of manifolds, called homoclinic/heteroclinic tangle, that

requires understanding of the geometry of the manifolds and the regions bounded between

the segments. This was formalized in Ref. [8, 7] as lobe dynamics which provided a language

to discuss global transport in phase space and computation of transport properties like

residence time and exit time distribution, entrainment and detrainment rates, and the flux

across a boundary.

Escape from potential well. This is a more general problem and appears across various

disciplines with the guiding approach being the crossing of transition state [9, 10, 11] or

periodic orbit in the bottleneck region of a potential well. We apply this framework of

understanding critical events to the classical problem of ship dynamics and capsize. The

motion of a marine vessel in ocean have received considerable attention from the perspective

of nonlinear dynamics and control systems for quite a while now [12, 13, 14, 15, 15]. This

has two fold purpose; namely the mechanics involved in describing the motion, and control

of undesirable behavior. The former purpose serves to explore dynamical features of a

nonlinear system as in Ref. [16], the later purpose is served in developing control approaches

and engineering devices as can be found in Ref. [17].

Effect of noise on escaping dynamics. In case of open dynamical systems, the envi-

ronment and external constraints imposed on the system fluctuate, in general, more or less

strongly. Rapid random fluctuations are always present in natural and engineering systems
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and their amplitude is not necessarily small. In laboratory experiments, the experimenter

will of course try to minimize the effect of random perturbations, we call these noise follow-

ing common usage, though it is impossible to eliminate noise completely. Hence, random

fluctuations are ubiquitous in the external constraints of open systems. Furthermore, sys-

tems near the onset of instabilities are sensitive to random noise just because instability

causes even the smallest of fluctuations to grow with time rather than decay away.

1.2 Attribution

This dissertation is in form of three manuscripts that are in preparation for submission

in peer reviewed journals. The title of this dissertation encapsulates the common theme of

these chapters, but an attempt has been made to limit the redundancy of description. In this

section, I declare the roles of co-authors and attribute the contributions made for individual

chapters.

Chapter 2

S. Naik, F. Lekien, S. D. Ross, Computational Method for Phase Space Transport with

Applications to Lobe Dynamics and Rate of Escape, Submitted to Regular and chaotic

dynamics

My main contributions to this paper are helping with finishing of the draft, to produce the

computational results, coming up application problems to test the software Lober, comparing

the accuracy of computation with literature and previously established results, to produce

the results of all LCS computations. Dr. Lekien and Dr. Ross developed the theory, proved

the theorems therein, generated the code Lober in C, and wrote the first draft.

Chapter 3

S. Naik, S. D. Ross, Partial control of escaping dynamics: Application to ship roll motion

and avoiding capsize, In preparation for submission to Proceedings of Royal Society: A
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I did the majority of writing, proposed the model problem, obtained the computational

results on invariant manifolds and safe sets, proposed the application of partial control and

formulated the problem as escaping dynamics. Dr. Ross edited the manuscript and provided

feedback, helped with parameter estimation, discussed directions of investigation.

Chapter 4

S. Naik, S. D. Ross, Cylindrical manifolds and partial control: Application to coupled roll-

pitch ship motion, Submitted to Communications in Nonlinear Science and Numerical Sim-

ulation

I did the editing, derived the analytical results, proposed the application of partial control

and obtained the computational results on safe sets. Dr. Ross wrote the first draft of the

manuscript, and performed computations of cylindrical manifolds.
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Chapter 2

Computational Method for Phase

Space Transport with Applications to

Lobe Dynamics and Rate of Escape

In collaboration with Francois Lekien and Shane D. Ross

2.1 Introduction

Lobe dynamics, introduced in [18], is a geometric method for determining the transport

in maps, typically two-dimensional, but there have been attempts at extension to higher

dimensions ( [19, 20]). Although chaotic transport in fluid was the initial inspiration for

this theory([18]), it has been applied to diverse transport problems which include dynamical

astronomy [21], wake behind a cylinder [22], oceanic flow in geophysics [23]. Following the

developments in [8, 24], lobe dynamics states that the two-dimensional phase space M of the

Poincaré map f can be partitioned into certain regions, with boundaries consisting of parts

of the boundary of M (which may be at infinity) and/or segments of stable and unstable
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invariant manifolds of hyperbolic fixed points, pi, i = 1, ..., N , as shown schematically in Fig.

2.1(a). When the manifolds W u(pi) and W s(pi) are followed out on a global scale, they

often intersect in primary intersection points {qi}. These intersections allow one to define

boundaries betweens regions {Ri}, as illustrated in Fig. 2.1(b). Moreover, the transport

between regions of phase space can be completely described by the dynamical evolution of

small subregions of phase space, “lobes” enclosed by segments of the stable and unstable

manifolds as defined below.

p2
p3

p1

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

(a) (b)

Figure 2.1: (a) Pieces of the local unstable and stable manifolds, W u(pi) (red) and W s(pi)
(green) of saddle fixed points {pi}. (b) When the manifolds W u(pi) and W s(pi) are fol-
lowed out on a global scale, they often intersect in primary intersection points {qi}. These
intersections allow one to define boundaries betweens regions {Ri}.

Classically, invariant manifolds of hyperbolic fixed points are computed for as long as possible

and lobes are extracted from the two curves [18, 21]. However, it is possible to get more

lobes, hence compute transport for a much longer period of time, by integrating separatrices

directly, particularly in the complex case of multiple, self-intersecting, lobes [21]. In this

approach, the notion of pips and sips are not suitable, thus we propose a generalization

of definition of lobes for two intersecting closed curves. When applying lobe dynamics to

transport problems, it is of eventual interest to quantify volume of phase space M that

crosses the boundary with higher iterates of the Poincarè map f . This is typically achieved

in multiple ways:
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• Distribute test points inside the phase space region of interest and computing the iter-

ate/s required for each to escape. This will also need to take care of the re-entrainment

due to the underlying turnstile mechanism [8, 25, 3].

• Constructing a functional of the nonlinear system of vector field which measures area

between the manifolds as parametrized by time. This is a semi-analytical approach

and remains valid near small perturbations, for example Melnikov method for mixing,

stirring, optimal phase space flux in [26, 27, 28, 29], and action-integral method.

• Following the boundaries of separatrices/manifolds as it is evolved in time and compute

set operations with its pre-images/images. This is a more general but surely a difficult

approach due to the stretching and folding of the curves that are involved in such

computations [30, 31, 32].

We consider two closed curves C1 and C2 in R2, both oriented in a counter-clockwise direction

which bound the two-dimensional subsets of R2, A1 and A2, respectively (see Fig. 2.2(b)).

We want to determine the area of the lobes (i.e,. the area of A1\A2 and A2\A1) defined by

these two curves.

(a)

C1

A1

C2

A2

(b)

Figure 2.2: (a) shows schematically lobes,pips and sips as defined for lobe dynamics. (b)
shows example of two closed curves, C1 and C2 in R2, oriented in counter-clockwise and
clockwise direction which bound the two-dimensional subsets of R2, A1 and A2, respectively.

In the §2.2-2.3, we derive the theory and numerical methods to separate the intersection

points between the two curves into equivalence classes and derive the area of the lobes
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defined by the two curves. In §2.4, we present an alternate method that can be used when

portions of the two curves have non-transverse intersections, which arises in the case of

an iterated separatrix. In §2.5, the results are applied to three examples of interest in the

dynamical systems literature. We apply the numerical methods to the planar restricted three

body problem(PCR3BP) in celestial mechanics, oscillating vortex pair flow as a model of

chaotic fluid transport. Finally, we study the escape from a potential well, by considering

the Poincaré surface-of-section and tube dynamics.

2.2 Curve Area

2.2.1 One-Dimensional Integrals for Areas

Let us define A1 = int(C1) and A2 = int(C2) as the area enclosed by C1 and C2, respectively

and denote this using the standard Lebesgue measure for µ in R2 as [A] = µ(A). The area

of each region can be computed as:

[Ai] =

∫∫
Ai

dA =
1

2

∮
Ci

ydx− xdy , (2.1)

by applying Green’s theorem to the vector field

f̄ =

 x

y

 =⇒ ∇ · f̄ = 2 . (2.2)

Eq. (2.1) allows us to reduce the computation of the area of a complicated region to a one-

dimensional integral over its boundary. Notice that the sign of the integral is to be reversed

if the curves are oriented clockwise. Our hypothesis stating that the curves are oriented in
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a counter-clockwise direction is equivalent to

∀i :

∮
Ci

ydx− xdy ≥ 0. (2.3)

2.2.2 Numerical Methods

We assume that the curves C1 and C2 are given in terms of a sequence of points (xi, yi).

We want an exact evaluation of the integral in Eq. (2.1) for piecewise polygonal curves. By

defining  x = xi + t(xi+1 − xi) ,

y = yi + t(yi+1 − yi) ,
(2.4)

we have ∫ xi+1,yi+1

xi,yi

ydx− xdy =

∫ 1

0

(yixi+1 − xiyi+1)dt = yixi+1 − xiyi+1 . (2.5)

As a result the exact value of the contour integral for a polygon is given by

[Ai] =
1

2

∮
Ci

ydx− xdy =
1

2

∑
i

(yixi+1 − xiyi+1) . (2.6)

2.3 Intersection Points and Lobes

Lobe dynamics is based on the geometry of a stable, W s and an unstable, W u invariant

manifold of (perhaps one/two different) hyperbolic fixed points, their intersection points

and areas enclosed by the pieces of the invariant manifolds. As defined in [18] and shown in

Fig. 2.2(a), q1 ∈ W u ∩W s is a primary intersection point (pip) if the segment W u[p−,ε, q1]

and W s[p+,ε, q1] intersects only at q1, and is a secondary intersection point (sip) if there

are other intersection points. If q1 and q2 are two adjacent pips, then the area enclosed

by the segments W u[q2, q1] and W s[q1, q2] is called lobe. Thus, a formal definition of pips
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and sips is not possible for closed curves without a reference point (e.g., a hyperbolic fixed

point/s). Instead, for intersecting curves C1 and C2 (see Fig. 2.3(a)) encountered in phase

space tranport problems, we separate the set of intersection points between the two curves

into classes of equivalence. For two curves corresponding to the invariant manifolds of a

hyperbolic fixed point, each class of equivalence corresponds exactly to the two pips and

associated sips of a lobe, as defined by [8].

2.3.1 Intersection Points

In this section, we assume that there are only transverse intersections of the curves. A

numerical algorithm for efficiently computing the intersection points is presented below.

The two curves are closed and the intersections are transverse, so the number of intersection

points must be even. We compute the 2N intersection points pi between the two curves C1

and C2. The unit tangent vector to the curve Cj at point pi is denoted 1j(pi). For each

intersection point, pi, we define

ρ(pi) =
11(pi)× 12(pi)

‖11(pi)× 12(pi)‖
. (2.7)

Notice that the intersections are transverse, so the denominator of Eq. (2.7) is always non-

zero and ρ(pi) ∈ {−1,+1}. Fig. 2.3 gives two examples of curves, their intersection points

and the value of ρ for each point.

2.3.2 Classes of Intersection Points

The segments of curve between intersection points are most important to our computation,

so we define C+
1 [pi, pj] and C+

2 [pi, pj] as the counter-clockwise segments of respectively C1

and C2 between the points pi and pj. Similarily, C−1 [pi, pj] and C−2 [pi, pj] are the clockwise

segments of respectively C1 and C2 between the points pi and pj. We define the positive and

13



p6
p3

p4

p5

p1 p2

C1

C2

p6
p3

p4

p5

p1 p2

C1

C2

Figure 2.3: Example of closed curves with transverse intersection. (a) Green intersection
points have ρ(pi) = 1. Blue intersection points have ρ(p1) = −1. (b) Intersection points of
the same color belong to the same equivalency class. The arrows represent the one-to-one
and onto relationship σ between the intersection points and the points joining the same
equivalency class can either be a knob or handle.

negative adjacency on C1 by

A±C1
(pi, pj) =

 1 if ∀ 1 ≤ k ≤ 2N : k 6= i and k 6= j =⇒ pk /∈ C±1 [pi, pj]

0 otherwise
. (2.8)

and the adjacency on C2 as

A±C2
(pi, pj) =

 1 if ∀ 1 ≤ k ≤ 2N : k 6= i and k 6= j =⇒ pk /∈ C±2 [pi, pj]

0 otherwise
. (2.9)

The visual interpretation of adjacency is that when traversing a curve in CCW/CW(positive

or negative sense) direction, the point pj with adjacency value of 1 is the point next to the

point pi.

The objective of this section is to determine a generalized notion of a lobe. Intuitively, lobes

are bounded by “segments of the curves C1 and C2 turning in opposite directions on each
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ρ(p) σ(p) Class
p1 +1 p2 1
p2 −1 p1 1
p3 +1 p4 2
p4 −1 p5 2
p5 +1 p6 2
p6 −1 p3 2

Table 2.1: Functions ρ and σ for the intersection points between the curves of Fig. 2.3. There
are two equivalency classes for this example.

A+
C1

( ↓ ,→) p1 p2 p3 p4 p5 p6

p1 0 1 0 0 0 0
p2 0 0 1 0 0 0
p3 0 0 0 1 0 0
p4 0 0 0 0 1 0
p5 0 0 0 0 0 1
p6 1 0 0 0 0 0

Table 2.2: Function A+
C1

for the intersection points between the curves of Fig. 2.3. The lines
and columns correspond respectively to the first and second argument of A+

C1
.

curve”. We formalize this idea by defining the signed adjacency

γ(pi, pj) =
ρ(pi) + 1

2
A+
C1

(pi, pj)−
ρ(pi)− 1

2
A−C2

(pi, pj) . (2.10)

Table 2.3.2, 2.3.2 and 2.3.2 show the value of the functions A+
C1

, A−C2
and γ for the example

intersecting curves of Fig. 2.3.

A−C2
( ↓ ,→) p1 p2 p3 p4 p5 p6

p1 0 0 0 0 0 1
p2 1 0 0 0 0 0
p3 0 0 0 1 0 0
p4 0 0 0 0 1 0
p5 0 1 0 0 0 0
p6 0 0 1 0 0 0

Table 2.3: Function A−C2
for the intersection points between the curves of Fig. 2.3. The lines

and columns correspond respectively to the first and second argument of A−C2
.
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γ ( ↓ ,→) p1 p2 p3 p4 p5 p6

p1 0 1 0 0 0 0
p2 1 0 0 0 0 0
p3 0 0 0 1 0 0
p4 0 0 0 0 1 0
p5 0 0 0 0 0 1
p6 0 0 1 0 0 0

Table 2.4: Function γ for the intersection points between the curves of Fig. 2.3. The lines
and columns correspond respectively to the first and second argument of γ.

In order to separate the intersection points in disjoint classes, we define an equivalency

relation between the intersection points by

Definition 2.3.1 pi ∼ pj iff there exists a sequence of K intersection points pαk
such that


pα1 = pi ,

pαK
= pj ,

ΠK−1
k=1 γ(pk, pk+1) = 1 .

(2.11)

We have the following properties

Theorem 2.3.1 (Reflexivity of ∼)

∀i : pi ∼ pi , (2.12)

Proof Letting K = 1 and α1 = i in Eq. (2.11) gives the desired result. �

Theorem 2.3.2 (Symmetry of ∼)

∀i, j : pi ∼ pj =⇒ pj ∼ pi , (2.13)

Proof We notice that for any intersection point pi, there is one and only one intersection
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point pj satisfying A+
C1

(pi, pj) = 1. This is a consequence of the fact that the intersections are

transverse and that there are not any self-intersections. There must be at least one segment

of the curve C1 leaving pi (based on a counter-clockwise orientation of C1). If there was

more than one segment leaving this point, the curve C1 would self-intersect. Similarly, there

is also one and only one intersection point satisfying A−C2
(pi, pk) = 1. Since ρ(pi) ∈ {−1, 1},

there is only one intersection point pq (q = j or k) such that γ(pi, pq) = 1. We define σ(pi)

as the unique intersection point satisfying

γ(pi, σ(pi)) = 1 . (2.14)

Notice that

pi 6= pj =⇒ σ(pi) 6= σ(pj) , (2.15)

and σ is therefore invertible. We construct the sequence (pαi
) using

 pα1 = pi ,

pαk+1 = σ(pαk
) .

(2.16)

Notice that the sequence (pαi
) satisfies the third condition of Eq. (2.11) for any length. The

number of intersection point is finite, so there must be an integer K such that pαK
is identical

to pαk
for k < K. We cut the sequence at the smallest possible K, so there is only one

repeated element in the sequence. The repeated element must be pα1 because σ is invertible.

As a result, the sequence (pαi
) is the unique path from pi to pi that does not contain only

pi and does not contain repeated points except for the endpoints. To prove the relationship,

we notice that pi ∼ pj =⇒ the point pj must be included in the unique sequence (pαi
). As a

result, we can take a subsequence from pi to pj in (pαi
) and pj ∼ pi. �
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Theorem 2.3.3 (Transitivity of ∼)

∀i, j, k :

 pi ∼ pj

pj ∼ pk

=⇒ pi ∼ pk . (2.17)

Proof The hypothesis gives us one path from pi to pj and one path from pj to pk. We can

combine these two paths to go from pi to pk and pi ∼ pk. �

As a result, ∼ is an equivalence relation for the set P of intersection points. We can define

the classes of equivalency {Pi} = P\ ∼ corresponding to subsets of P containing all the

elements that are equivalent under ∼ (i.e., the quotient of P by ∼). We define the number

of sets in P\ ∼ as nP and we note that the equivalency classes constitute a partition of P .

Namely the Pi are disjoint and the union of their elements is P . For the example intersecting

curves, there are nP = 2 equivalency classes, P1 = {p1, p2} and P2 = {p3, p4, p5, p6}.

2.3.3 Lobe Area

We define

S(p) =


∫
C+

1 [p,σ(p)]
ydx− xdy if ρ(p) = +1 ,∫

C−2 [p,σ(p)]
ydx− xdy if ρ(p) = −1 ,

(2.18)

where σ(p) has been defined in the proof of Theorem 2.3.2.

Conjecture:

[A1\A2] =
∑

Pi∈P\∼

(∑
p∈Pi

S(p)

)
. (2.19)

Notice that using A−C1
and A+

C2
instead of A+

C1
and A−C2

in the definition of γ (Eq. 2.10) gives

another equivalence relationship. The equivalence classes of the latter gives the area [A2\A1]

in a form identical to Theorem 2.3.3. Also notice that Theorem 2.3.3 could be written with
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a single sum over all the intersection points. However, we prefer to keep the sum of the

equivalency classes. The sum over each intersection point in the same class correspond to

the area of a lobe, i.e., an individual protuberance of A1 outside A2.

2.3.4 Numerical Implementation

Intersection Points

The computation of the intersection points between two curves that are piecewise linear re-

quires browsing every pair of linear segments (one on C1 and one on C2) and determining the

possible intersection point between these two segments. This is a computationally expensive

operation requiring one to solve a 2 × 2 linear system. Instead, we propose to quick check for

the existence of an intersection point between two segments using the following properties.

Theorem 2.3.4 If the segments [(x1, y1), (x2, y2)] and [(x′1, y
′
1), (x′2, y

′
2)] intersect, then we

must have

((y2 − y1)x′1 − (x2 − x1)y′1 − x1y2 + y1x2) ((y2 − y1)x′2 − (x2 − x1)y′2 − x1y2 + y1x2) ≤ 0 ,

(2.20)

Proof The equation of the line passing through the two points (x1, y1) and (x2, y2) is

f(x, y) = (y2 − y1)x− (x2 − x1)y − x1y2 + y1x2 = 0 . (2.21)

The theorem states that if the segment [(x′1, y
′
1), (x′2, y

′
2)] intersects the segment [(x1, y1), (x2, y2)],

then it must also intersect the line f(x, y) = 0. As a result, the endpoints of the segment

[(x′1, y
′
1), (x′2, y

′
2)] must be on opposite sides of the line and we have

f(x′1, y
′
1)f(x′2, y

′
2) ≤ 0 . (2.22)
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Theorem 2.3.4 gives us a necessary condition for an intersection between two segments.

Notice that we can reverse the role of each segment in Theorem 2.3.4 and get another

necessary condition. In addition, we have

Theorem 2.3.5 The segments [(x1, y1), (x2, y2)] and [(x′1, y
′
1), (x′2, y

′
2)] intersect if and only

if

((y2 − y1)x′1 − (x2 − x1)y′1 − x1y2 + y1x2) ((y2 − y1)x′2 − (x2 − x1)y′2 − x1y2 + y1x2) ≤ 0 ,

(2.23)

and

((y′2 − y′1)x1 − (x′2 − x′1)y1 − x′1y′2 + y′1x
′
2) ((y′2 − y′1)x2 − (x′2 − x′1)y2 − x′1y′2 + y′1x

′
2) ≤ 0 .

(2.24)

Proof Theorem 2.3.4 directly implies one direction (=⇒) of the equivalence. To prove ⇐=,

notice that if the two equations are satisfied, the endpoints of the first segment are on each

side of the line containing the second segment. The endpoints of the second segment are also

on each side of the line containing the first segment. As a result, the two segments must

intersect in at least one point.

The two theorems above allow for a very fast and efficient algorithm to detect intersection

points. Each segment on curve C1 is checked for intersections with each segment on curve

C2. However, only the necessary condition given by Theorem 2.3.4 is checked. Only if this

condition is satisfied is the second condition in Theorem 2.3.5 checked. If the necessary and

sufficient condition is satisfied, then the intersection point is effectively computed.

Integrals

We assume that the curves C1 and C2 are given in terms of a sequence of points (xi, yi).

We want an exact evaluation of the integral in Eq. (2.18 for piecewise polygonal curves. By
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using Eq. (2.6) in the section above, Eq. (2.18) becomes

S(p) =
∑

(xi, yi)

∈ Cρ(p)[p, σ(p)]

(yixi+1 − xiyi+1) . (2.25)

2.4 Non-Transverse Intersections

2.4.1 Previous Approaches

Here, in contrast with the previous section, we do not require that the two curves have

only transverse intersections. We allow non-tranverse intersection points and we also allow

segments of curves that are common to C1 and C2.

Separatrix 
with BIP at qi

Evolved separatrix with 
BIP at f-1(q)

L

L’

f-1(q)

qp

Figure 2.4: Schematic showing the slightly perturbed separatrices with different boundary
intersection point(BIP). When the separatrices have near-tangent intersections, obtaining
intersection points require inflating/deflating the points to avoid false lobes formed by the
section of curve L and L′.

During previous numerical runs, we used an algorithm based on primary intersection points

and regular intersection points to identify the boundary of each lobe and then compute the

area of these lobes. These algorithms cannot be adapted to match the new problem. The

tangency of the two curves creates both a confusion in the ordering of the interesection points
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and the postiion of the lobes as well as an enormous computational difficulty to extract the

actual position of the intersection (determinant of a linear system → 0).

The most reasonable patch used is to “inflate” or “deflate” the curves before computation in

order to avoid the tangency. We transformed each point x̄ of one of the curves to x̄+ ε(x̄−

x̄g)/ ‖(x̄− x̄g)‖, where x̄g is the center of gravity of the curve. This can remove the presence

of non-tranverse intersections for ε > ε0, where the limit ε0 is carefully chosen. However,

the curve used in our problem contains many segment very close to each other in such a

way that increasing ε above the minimum distance between the segments ε1 creates new

non-transverse intersections. In one example, ε1 was smaller than ε0 forbidding the use of

this trick to compute the lobe area. Moreover, the error on the area increases quickly with ε,

so we developed the following exact method that is robust to the presence of non-transverse

intersection of the curves.

2.4.2 Interior Function

Let us define the complex function

fz0(z) =
1

x− x0 + i(y − y0)
. (2.26)

The integral of f(z) over a closed curve is equal to 2iπ times the number of turns that the

closed curve makes around the point x0 + iy0 (to prove that, use the fact that f(z) is analytic

everywhere in the complex plane except at x0 + iy0 and use the residue theorem).

We define

Ji(x0, y0) = Im

{∫
Ci

dx+ idy

x− x0 + i(y − y0)

}
, (2.27)

and

Ii(x0, y0) =

 1 if Ji(x0, y0) < π

−1 if Ji(x0, y0) ≥ π
, (2.28)
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Figure 2.5: Schematic view of the paths involved in the definition of Q1, Q2 and Q3.

and we notice that Ii(x0, y0) is negative when the point (x0, y0) is contained in Ai and positive

otherwise.

2.4.3 Lobe Area

In order to extract [A1\A2] and [A2\A1] from the shape of the curves, we define the following

quantities

Q1 =

∫
C1

I2(x, y) (ydx− xdy) +

∫
C2

I1(x, y) (ydx− xdy) , (2.29)

Q2 =

∫
C1

I2(x, y) + 1

2
(ydx− xdy) +

∫
C2

I1(x, y) + 1

2
(ydx− xdy) , (2.30)

Q3 =

∫
C1

I2(x, y)− 1

−2
(ydx− xdy) +

∫
C2

I1(x, y)− 1

−2
(ydx− xdy) . (2.31)

A quick look at the different paths on Fig. 2.5 reveals that

Q1 = [A1 ∪ A2]− [A1 ∩ A2] = [A1\A2] + [A2\A1] (2.32)

Q2 = [A1 ∪ A2], (2.33)
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Q3 = [A1 ∩ A2]. (2.34)

Notice that the three equation above are not linearly independent and any of them can give

us the expected results. However, we compute Q1, Q2 and Q3 and use the redundancy to

minimize the error on the integrals and provide an approximation of the computational error.

Since

[A1\A2] = [A1 ∪ A2]− [A2] = [A1]− [A1 ∩ A2], (2.35)

and

[A2\A1] = [A1 ∪ A2]− [A1] = [A2]− [A1 ∩ A2], (2.36)

we have

[A1\A2] =
1

2
(Q2 −Q3) +

1

2
([A1]− [A2]), (2.37)

and

[A2\A1] =
1

2
(Q2 −Q3) +

1

2
([A2]− [A1]). (2.38)

And using

[A1] + [A2] = [A1 ∪ A2] + [A1 ∩ A2], (2.39)

we find

[A1\A2] =
1

2
Q1 +

1

2
([A1]− [A2]), (2.40)

and

[A2\A1] =
1

2
Q2 +

1

2
([A2]− [A1]). (2.41)

Our algorithm combines these two results and provides the following final answer

[A1\A2] =
1

2
(A1 − A2) +

1

4
(Q1 +Q2 −Q3), (2.42)

[A2\A1] =
1

2
(A2 − A1) +

1

4
(Q1 +Q2 −Q3), (2.43)
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δ[A1\A2] = δ[A2\A1] =
1

4
|Q2 −Q3 −Q1| , (2.44)

where the last equation gives the approximate error on the computed area.

2.4.4 Numerical Methods

The only technical difficulty in this algorithm is the numerical computation of the functions

Ji in Eq. (2.27). A fast and accurate algorithm for polygonal boundaries is given in §2.4.4.

The computation of the integrals in Eq. (2.29), (2.30) and (2.31) is similar to the integral

computed in §2.2.2.

In addition, we present a simple algorithm that we used to densify the curve close to the

intersection points. The algorthm in §2.4.4 has proved to increase the accuracy of this

method without decreasing its efficiency too much.

Computation of Ji(x, y)

In this section, we derive the exact value of the function Ji defined in Eq. (2.27) when the

boundary Ci is a polygonial line. For each linear segment [(x1, y1), (x2, y2)], we have

 x = x1 + t(x2 − x1) ,

y = y1 + t(y2 − y1) .
(2.45)

Hence,

Im

{
dx+ idy

x− x0 + i(y − y0)

}
=

(x1 − x0)(y2 − y1)− (y1 − y0)(x2 − x1)

(x1 − x0 + t(x2 − x1))2 + (y1 − y0 + t(y2 − y1))2 , (2.46)

= 1̄z
(x̄1 − x̄0)× (x̄2 − x̄1)

‖x̄2 − x̄1‖2 t2 + 2(x̄2 − x̄1) · (x̄1 − x̄0)t+ ‖x̄1 − x̄0‖2 ,(2.47)

=
‖u‖2 ‖v‖2 sin(u, v)

‖v‖2 t2 + 2 ‖ū‖ ‖v̄‖ cos(ū, v̄) t+ ‖u‖2 , (2.48)

25



where  ū = x̄1 − x̄0 ,

v̄ = x̄2 − x̄1 .
(2.49)

Notice that the realisant of the denominator of Eq. 2.48 is

ρ = −4 ‖ū‖2 ‖v̄‖2 sin2(ū, v̄) ≤ 0 . (2.50)

As a result, we have

Im

{∫
[x̄1,x̄2]

dx+ idy

x− x0 + i(y − y0)

}
=

∫ 1

0

‖ū‖2 ‖v̄‖2 sin(u, v) dt

‖v̄‖2 t2 + ‖u‖ ‖v‖ cos(ū, v̄) + ‖ū‖2 (2.51)

=
sin(ū, v̄)

|sin(ū, v̄)|

[
tan−1 ‖v‖2 t+ ū · v̄

‖ū‖ ‖v̄‖ |sin(ū, v̄)|

]1

0

(2.52)

= tan−1 ‖v̄‖2 + ū · v̄
1̄z · (ū× v̄)

− tan−1 ū · v̄
1̄z · (ū× v̄)

(2.53)

Notice that for sin(ū, v̄) = 0, the increment to the integral is zero. This is consistent with

the equation above where the right-hand term is continuous for ū× v̄ = 0 and vanishes.

From a numerical point of view, ...

get back to original notation

One can easily check that

φ′(0) =
‖v̄‖

‖u‖+ ‖v‖ . (2.54)

Hence when sin(u, v) is small, one can approximate the integral by

φ =
‖v‖

‖u‖+ ‖v‖ sin(ū, v̄) , (2.55)

or

φ = 1̄z
ū× v̄

‖ū‖ (‖ū‖+ ‖v̄‖) . (2.56)
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This approach is exactly as point in polygon problem in computational geometry which favors

the ray passing over the winding number concept. Although, our method is mathematically

satisfying, it can have poor performance when compared to the more efficient method of ray

passing. This is due to he integral and trigonometric function evaluations that are involved

but our purpose is to adopt a more rigorous method with some sacrifice of performance.

Curve Densifier

There is a built-in densifier in the light version of Lober. It adds points on the curves close to

their intersections. To activate the densifier, add the parameters -DENS <nPass> <nDens>

at the end of the command line. The arguments <nPass> and <nDens> give respectively the

number of passes to be performed and the number of points to add near each intersection at

each pass.

The extra precision is always ir = ndens
npass . In other words, the precision is the same with

(npass = 1, ndens = 1000) than with (npass = 3, ndens = 10). For a constant ir, the value of the

two parameters ndens and npass should minimize the computational time. Small npass means

that fewer steps are necessary to densify the curve and can reduce the computational time.

However, small npass usually implies large ndens to maintain a constant ir. Since the extra

length of the curve is ndensnpass, the number of points increases rapidly if npass is too small

and lengthens the computation. So there is an optimal npass that minimizes computation

time.
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(a) OVP flow
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(b) PCR3BP

Figure 2.6: Showing the lobe area for different curve densifier option in OVP flow and
PCR3BP. Along the x-axis the indices denote the following densifier options:1.-DENS 0,
2.-DENS 1 10, 3.-DENS 3 10, 4. -DENS 5 100, 5. without -DENS option which triggers
the AUTO densifier. The y-axis is the average of the entraining and detraining lobes for the
parameters ε = 0.1,γ = 0.5 related to the flow. Using webplotDigitizer, we obtained lobe
area from the analytical result in [18] which is µ(L) ≈ 2ε|F (γ)| ≈ 0.2145.

2.5 Application to Dynamical Systems and Lobe Dy-

namics

In this section, we will explore transport in phase space using the theory of intersection

points and curves developed in the previous section. This will also be an exercise in using

geometric approach of lobe dynamics and heteroclinic/homoclinic tangles.

2.5.1 Chaotic transport in fluid flow

We will apply the methods developed above to quantify phase space transport in the oscil-

lating vortex pair (OVP) flow that was introduced in Rom-Kedar et al. [18]. In this fluid

flow, it is of interest to calculate the escape rates of species S1 from the inner core R1 to the

outside region R2 shown in Fig. 2.7(b). For two-dimensional, incompressible, inviscid fluid

flow, it is known that the stream-function is analogous to the Hamiltonian governing parti-
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cle motion and the domain of the fluid flow is identified as the phase space. The OVP flow

is generated by two-counter rotating vortices which are sinusoidally perturbed to obtain a

non-autonomous velocity field in R2. Under the steady flow, without external perturbation,

the trajectory on the streamfunction, Ψ = 0 approaches the saddle equilibrium points p+ as

t → ∞ and p− as t → −∞ (p+ 6= p− for heteroclinic and p+ = p− for homoclinic connec-

tions). This acts as a boundary restricting particles to enter or escape the region R1 and

in dynamical systems terminology, is called separatrix. However, with suitable perturbation

the picture changes dramatically as transport across the boundary becomes feasible due to

chaotic particle motion in phase space. We introduce a periodic perturbation in the flow

field and generate the Poincaré map defined by

f :U0 → U0 (2.57)

where, U0 = {(x, y, θ) ∈ R2 × S1 : θ = 0} (2.58)

is the cross-section on which the structure of manifolds and associated lobe dynamics is

applied. The general transport problem for two-dimensional maps and underlying geometric

view of quantifying transport is developed and presented in detail in [6, 33, 18] and we will

briefly summarize the approach relevant for the numerical experiments in our study.

The dynamical system of interest is the passive particle motion in a co-moving frame of

two counter rotating vortices under an external field of sinusoidal strain-rate. Casting the

equations in a Hamiltonian formulation using the streamfunction as the Hamiltonian function

and performing perturbation expansion of the velocity field (refer [18] for details), the system

can be expressed as

x. t = f1(x, y) + εg1(x, y, t/γ; γ) +O(ε2)

y. t = f2(x, y)− εg2(x, y, t/γ; γ) +O(ε2)

(2.59)
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Figure 2.7: (a) shows the unperturbed streamlines with periodic orbits in the region R1 and
free flow region R2 and (b) shows the regions of interest R1 and R2 for studying transport in
the OVP flow.The transport between the regions R1 and R2 can be explained and quantified
in terms of the turnstile mechanism.

where,

f1 = −y − 1

I−
+
y + 1

I+

− 0.5

f2 =
x

I−
− x

I+

(2.60)

and

g1 = [cos(t/γ)− 1]

{
1

I−
+

1

I+

− 2(y − 1)2

I2
−

− 2(y + 1)2

I2
+

}
+ (x/γ) sin(t/γ)

{
γ2

[
y − 1

I2
−
− y + 1

I2
+

]
+ 1

}
− 0.5

g2 = 2x[cos(t/γ)− 1]

{
y − 1

I2
−

+
y + 1

I2
+

}
+ (1/γ) sin(t/γ)

{
γ2

2

[
1

I−
− 1

I+

]
− x2γ2

[
1

I2
−
− 1

I2
+

]
− y
}

and I± = x2 + (y ± 1)2

(2.61)

The OVP flow has two non-dimensional parameters which denote the circulation strength of

the vortices, γ, and perturbation amplitude, ε. For a complete analysis of transport in such
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a flow,Rom-Kedar et al. [18] explores a combination of these two parameters but we will

present two cases as application of theory presented and implemented in Lober. Due to the

complicated nature of the vector field in Eqn. (2.59), we numerically compute the invariant

manifolds using globalization (see [34]) technique and based on the benchmark algorithm

in [35]. The two cases of manifold computation presented in Fig. 2.8 show differences in

geometry of turnstiles when the manifolds have near-transverse or near-tangent intersections.

Using the computed manifolds as inputs to Lober, we can identify the lobes, separatrix, pips

and manifolds as shown in Fig. 2.5.1.
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(a) γ = 0.5
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3.5

x

y

(b) γ = 1.81

Figure 2.8: Computed unstable(red) and stable(green) manifolds of the hyperbolic fixed
points for perturbation amplitude of ε = 0.1.The manifolds are shown for qualitative com-
parison and a change in orientation for the γ values as predicted by Melnikov theory in
Ref. [18].

In essence, the perturbation destroys the separatrix as a boundary defined as,

B(q) = {W s[p+,ε, q] ∪W u[p−,ε, q]} ∪ {W s
−,ε ∩W u

+,ε} (2.62)

and pieces of the stable and unstable manifolds of the hyperbolic fixed points (p+,ε, p−,ε)

intersect to form lobes, which is the skeleton for transport across the boundary. Using a

pip on these manifolds, we choose one to use as a boundary intersection point (bip) q which

parametrizes a pair of entering and exiting lobes; called turnstiles by MacKay et al. [36].
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The collection of turnstile lobes is defined in terms of the bip and its pre-image as [6]:

L1,2(1)
⋃

L2,1(1) = W s[f−1(q), q]
⋃

W u[f−1(q), q] (2.63)

where, Li,j(n) denotes lobe in the region Ri that is mapped to the region Rj after n iterates.

Using the turnstiles, we can express the volume of species Si that is transported in terms

of intersection areas of the lobes and iterates of the Poincaré map. Following the theory

described in [6], we use the following quantities of interest:

1. ai,j(n) : Flux of species Si from region Ri into region Rj on the nth iterate.

2. Ti,j(n) : Total amount of species Si contained in region Rj after the nth iterate.

We have the following approaches (see Appendix. A.1 for usage details) for computing these

quantities:

1. Separatrix method: Generate separatrices with q and its pre-images (f−1(q), f−2(q), . . .)

as BIP. This can be performed by evolving the separatrix or executing Lober with

different BIP index. This is shown in Fig. 2.9 and these curves are now used as input

to the light option of Lober.

2. Lobe method: Obtain the turnstile lobes L1,2(1), L2,1(1) and images of entering(in the

sense of entering the region R1 in the next iterate) lobe L2,1(1) or pre-images of exiting

lobe L1,2(1). These are obtained from Lober as closed curves and given as input to the

light option of Lober to compute intersection areas.

Using the Lemma 2.3 and Theorem 2.5 in [6], the quantity a2,1 in terms of the turnstiles and

intersection areas is expressed as,

a2,1(n) = T2,1(n)− T2,1(n− 1) = µ(L2,1(1))−
n∑

m=1

µ(L2,1(1) ∩ fm−1(L1,2(1))) (2.64)
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Figure 2.9: Showing the separatrix with q as a bip and its backward evolution with the
pre-images of q as bips. The region R1 is the transparent layer on the pre-images.

The quantity under the summation is the intersection area of the lobe L2,1(1) and pre-

images of L1,2(1) that is shown in the Fig. 2.10 and demonstrates the difficulty in tracking

lobe boundaries as stretching and folding generates thin filaments of curves with near-tangent

intersections. While, the lobe method is a reduced order calculation for transport, separatrix
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Figure 2.10: Showing the turnstiles in red(entraining lobe labeled L1,2(1)) and
cyan(detraining lobe labeled L2,1(1)) for the OVP flow with parameters ε = 0.1, γ = 0.5.
The zoom-in view shows the intersection regions that are used in quantifying the transport.

method is useful when multilobe and self-intersecting turnstiles generate tangent intersec-

tions and tracking boundaries and even test points becomes expensive. In terms of the
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boundary, the quantity T1,2(n) is given by

T1,2(n) = [B(q) \ (B(q) ∩ f−n(B(q)))] (2.65)

and the quantity a1,2(n) is

a1,2(n) = T1,2(n)− T1,2(n− 1) (2.66)

For validating Lober results, invariant manifolds of the hyperbolic fixed points p+,ε, p−,ε are

provided as input and the outputs are shown in Fig. 2.5.1. It clearly identifies the lobes,

pips and separatrix parametrized by the pip at q = (0.0, 2.065), and indexed as b#pips/2c.
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2
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(b) γ = 1.81

Figure 2.11: Output of Lober identifying the lobes, pips(filled black circle) and the separa-
trix(thick black line). For both the cases, ε = 0.5.

Using the separatrix method, we obtain the lobe areas for different γ values and shown in

Fig. 2.12(a). We will explore the advantages of the separatrix method for the next application

where computing intersection of lobe areas can be more complicated. This can be used as

an alternate method to express the transport quantities in lobe dynamics. However, for

validation purpose we have performed the intersection of lobe area computations to obtain
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aij in Eqn. (2.64) and show the results for first 7 iterations of the map f in Fig. (2.12(b)).
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Figure 2.12: Fig. (a) Shows the area of lobes for ε = 0.1 and different γ values. This agrees
well with Fig.9 in [18] which compares the brute force method of lobe area calculations with
Melnikov function. Fig. (b) Shows the normalized fluid volume for increasing iterates of the
perturbation period.

2.5.2 Escape from a potential well

In this application of Lober, we will apply the geometric methods of phase space transport to

a ship capsize model to calculate escape rate from a potential well and combines transition

state theory (ref chemical physics and atomic physics papers) and tube dynamics ((ref celes-

tial mechanics papers)) to characterize non-capsize criteria. We will consider a prototypical

system in the form of a rescaled Lagrangian given by

L(x, y, vx, vy) =
1

2
v2
x +

1

R2
v2
y − V (x, y) (2.67)

and where, V (x, y) =
1

2
x2 + y2 − x2y (2.68)

is the corresponding potential function that arises in a coupled pitch and roll model of ship

dynamics and the parameter R = ωθ/ωφ is the ratio of natural pitch and roll frequencies

(refer [37] and Ross2012 for the details). The ship’s motion in absence of non-conservative,
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time-varying sea waves is thus given by the first-order ODEs as

ẋ = vx

ẏ = vy

v̇x = −x+ 2xy

v̇y = −R2y +
1

2
R2x2


(2.69)

which conserves the energy

E(x, y, vx, vy) =
1

2
v2
x +

1

R2
v2
y +

1

2
x2 + y2 − x2y (2.70)

The projection of energy manifold

M(e) = {(x, y, vx, vy)|E(x, y, vx, vy) = e}

onto configuration space is historically known as Hill’s region and bounds the region that is

energetically accessible as shown in Fig. 2.13. The nonlinear system of equations (Eqn. 2.69)

have saddle equilibrium points at (±1, 0.5, 0, 0) and the realms of possible motion in con-

figuration space between the saddles is called the non-capsize realm and all possible states

beyond as capsize realm. The intersection of Hill’s region and the non-capsize realm is the

potential well from which escape identifies capsize and escape rate is the percentage of tra-

jectories that capsize. When the energy is above its critical value, necks appear around the

saddle points (Fig. 2.13(b)) that acts as a “threshold” for states in non-capsize region to

escape. Traditionally, escape rate of trajectories from the non-capsize realm is computed

using tube dynamics [21] and transition state theory [38] along with Monte-Carlo method to

estimate area inside bounded curves ([39]).

However, we will use the implementation in Lober to compute the escape rate from area of

closed curves and briefly summarize the steps involved in computing the curves of interest
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(a) E = 0.247 (b) E = 0.253 (c) e = 0.20 (d) e = 0.25

Figure 2.13: Realms of possible motion shown in white and energetically inaccessible region
in grey for capsize/critical energy, Ec = 0.25 and R = 1.6. Poincaré S-O-S defined by U1 of
the energy manifold.

(refer [34] for more details). Firstly, we select a suitable Poincaré Surface-Of-Section (S-O-S)

which would be able to illustrate the transition dynamics and escape of trajectories. It is

discussed in [40] as selecting a periodic orbit surface of section that can avoid pathological

situations of intersection of manifolds and Poincaré S-O-S. However, we make an educated

guess for the present system and define the S-O-S as

U1 = {(y, vy)|x = 0, vx(y, vy; e) > 0} (2.71)

which defines a plane to capture motion of trajectories to the right saddle shown in Fig. 2.14.

The (y − vy) surface-of-section captures the chaotic behavior that ensues when the energy

is greater than the energy of the saddle or critical value and the KAM curves that begin to

disappear as shown in Fig. 2.13. Secondly, we obtain the periodic orbit about the hyper-

bolic fixed point which for the symmetric configuration space is independent of the escape

direction. The periodic orbit (p.o.) corresponding to a energy level e + ∆e is the bounding

p.o. that touches the Hill’s region boundary for that energy. Thirdly, we compute the invari-

ant manifolds of the p.o. using globalization technique and obtain intersection of the tubes

(manifolds are codimension-1 object and in 4D phase space represent 3D surfaces) with the
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Poincare S-O-S, U1

transition tube

periodic orbit 

Figure 2.14: Showing the periodic orbit and corresponding stable manifold as transition
tube for trajectory (red) escaping to the capsize realm and non-transit trajectory (blue) that
remains bounded.

Poincaré surface-of-section given by Eqn. (4.2.13). Thus intersections are closed curves topo-

logically equivalent to a S1 and form tiling [[40]] for the surface-of-section. Notation for tube

intersection with the SOS: To describe the intersection of the tube manifolds and S-O-S, U1

we denote the manifolds by W
(·)
(·) where the superscript is either s/u for the stable/unstable

tube branch inside the well and the subscript is either CL/CR for the left/right critical point.

The intersection of W
(·)
(·) and U1 is further denoted by W

(·)
(·)
⋂
U1.
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Figure 2.15: Tube manifolds of right and left critical points in (x, y, vy) subspace of the 4D
phase space for energy, ∆e = 0.00307 above critical energy.

2.6 Conclusion

Lobe dynamics describes global transport in terms of lobes, parcels of phase space bounded

by stable and unstable invariant manifolds associated to hyperbolic fixed points of the sys-

tem. Escape from a potential well involves describes the study of phase space structures

that lead to critical events by crossing of certain barriers. Both of these frameworks—in the

circumstances where the dynamics are reduced to two-dimensional maps—require compu-
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Exit via left after intersection # Entrance via left Entrance via right
1 0% 0%
2 0% 11.5%
3 2.93% 0.016%
4 1.87% 1.441%

Exit via right after intersection # Entrance via left Entrance via right
1 0% 0%
2 0% 0%
3 11.2% 2.90%
4 0.0246% 0.278%

Table 2.5: Percentage of trajectories escaping via left/right stable tube that entered via left
and right unstable tubes.

tation of curves, intersection points, and area bounded by the curves to quantifying phase

space transport.

In the paper, we presented a theory for classification of intersection points to compute the

area bounded between the segments of the curves. This involves the partition of the in-

tersection points into equivalence classes to apply a discrete form of Green’s theorem. An

alternate method for curves with non-transverse intersections—related to identifying lobes

by iterating the separatrix using the flow map—was also presented along with a method

to insert points in the curve for densification. A software package Curve densifier im-

plements a interpolation and insertion method in MATLAB for increasing the number

of points on a curve and is made available as open-source repository in Github (https:

//github.com/Shibabrat/curve_densifier). In this case, the notion of primary inter-

section point and secondary intersection point is not suitable and hence, we propose a

generalization of the notion of lobes for two intersecting curves. We presented a numeri-

cal implementation of the approaches for computation of intersection points between two

closed curves, lobes defined by these intersections, and the area of these lobes. The software

package Lober based on the theory and numerical methods is made available as open-source

repository in Github (https://github.com/shibabrat/lober). The framework described

was applied to transport problems in fluid transport and escape from a potential well in
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context of ship motion and capsize.
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Appendix A

A.1 Usage and outputs

This section provides low level details for using Lober and processing the output of intersec-

tion points and curves. There are two implementation of the equivalence class approach to

identifying intersection regions and points. This algorithm is the -light mod of Lober. The

syntax is

lober -light <c1> <c2> <rslt> [ -DENS <nPass> <nDens> ]

where <c1> and <c2> are the names of the files containing respectively the curves C1 and C2

and <rslt> is the file to be created by Lober to output the results. The optional arguments

of the built-in densifier (-DENS <nPass> <nDens>) are described in the next section. The

curve are stored in the files in a Tecplot ASCII format, i.e.

VARIABLES=’’x’’’’y’’

ZONE T=’’the curve C1’’

0.2 0.4

0.23 0.45

0.35 0.35

...
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The output file (<rslt>)will contain one line with 4 numbers: the area of the lobes inside,

the area of the lobes outside and the relative error on these two values. This is useful to get

an estimate of the error involved in computing the area and provides a first order check of

the output. In addition to this, Lober 1.8 generates 6 output files in Tecplot ASCII format

with one header line and points arranged in N × 2 array of N points in R2. The intersection

points, if it exists and is identifiable for a given point density, are stored in files c10.datand

c20.dat. The set of points which are on the boundary of C1 ∩ C2 and C2 ∩ C1 are stored

in c11.datand c22.datand those are on the boundary of C1 \ C2, C2 \ C1, are stored in

c12.datand c21.dat.
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Chapter 3

Partial control of escaping dynamics:

Application to ship roll motion and

avoiding capsize

In collaboration with Shane D. Ross

3.1 Introduction

The control of transient chaos has been of interest in both applied and theoretical studies in

various natural and engineering sciences (cite Grebogi, Ott, Yorke and the book on control-

ling chaos). However, these controlled systems can still exhibit catastrophic events, without

any sudden changes in the chaotic attractor, which would be desirable to avoid.

Ship dynamics and capsize in rough seas has been studied by naval architects for quite some

time now(refer some historic papers). More recently, Soliman et al. [41] used geometric

techniques of nonlinear dynamics for transient capsize phenomena and presented safety cri-
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teria based on erosion of basin of attraction. While the marine control literature [42] aims

at introducing advances in control theory to ship safety, the underlying technology is too

sophisticated for use in fishing trawlers or less expensive ocean liners and ferry boats.

The dynamics of large amplitude roll motion involves the nonlinear coupling of a ship’s

inertia, damping, hydrodynamic resistance, wave and wind moments. Computational study

of the underlying phase space structures has been proved to be insightful for the ship capsize

and escape from potential well leading to undesirable states. However, it has also been

claimed in Ref. [43] that these methods lack predictive ability in terms of a priori analytical

formulae to avoid capsize.

The control of excessive roll motion of a ship leading to capsize can be traced back to William

Froude’s work during 1860 when bilge keels were first introduced and used on ship hulls to

increase hydrodynamic resistance and act as a passive control mechanism to avoid capsize.

In this work, we attempt to learn if the method of partial control can be useful for feedback

control of natural and engineering systems that exhibit escape from a potential well. We

also present an approach of incorporating physically relevant forces as discrete disturbance

which exacerbates the escape from the potential well. The same question for feedback control

implemented using this approach, however, remains unanswered.

3.2 Description of ship roll motion

The full rigid body dynamics of a ship is governed by surge, sway, heave and roll, pitch,

yaw as translational and rotational degrees of freedom respectively which are coupled to

the surrounding fluid motion. However, in ocean engineering and naval architecture, ship

motion and capsize is analyzed by considering roll (φ), pitch (θ) and heave (z) as coupled or

independent degrees of freedom. This leads to a hierarchy of models, the simplest considering

only the roll degree of freedom, with the more complex models considering coupled roll-pitch
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motions or even roll-pitch-heave motions.
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Figure 3.2.1: Schematic of the degrees of freedom of a ship in 4.1(a) and 4.1(b) illustrates
the wave characteristics. Adapted from [42].

The dynamics of a ship near the onset of capsize can be viewed as a large amplitude nonlinear

rolling motion when approximations that are valid for the damped and forced system are

considered [44]. Thus, considering only the roll degree-of-freedom (DOF) is an adequate

assumption based on the fact that rolling motion is predominant over the other degrees of

freedom when an observer, located at the center of the ship (pt. O in Fig. 4.1(b)), describes

a capsizing ship’s motion [45]. Besides, the single DOF model assumption will further our

understanding of the methods for avoiding or delaying imminent capsize in a fully nonlinear

coupled model of roll, pitch, and heave. Thus, avoidance of capsize in the roll DOF model

is used as a preliminary step in application of the partial control approach.

In ship design, capsize is defined as the exceeding of the roll angle of a ship when the righting

moment, that is the restoring moment due to center of buoyancy and center of gravity, goes

to zero. This roll angle is the roll angle of vanishing stability, denoted by φv, which depends

on a ship’s structural and dynamic parameters. For the purpose of this study, we will focus

on a capsized Danish tanker [46], the Edith Terkol, and a roll model previously developed

by Soliman et al. [41]. The restoring moment and roll angle of vanishing stability for the

said ship is shown in Fig. 3.2(a). It is to be noted that capsize prediction was based on

the analysis of calm water characteristics like the restoring moment (typically called the GZ
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curve) before dynamic stability analysis was introduced in [41]. The roll model, adopted

in [41], is given by

φ̈ = −c1φ− c2|φ|φ− c3φ
3 − c4|φ|φ3 − c5φ

5 − b1φ̇− b2|φ̇|φ̇+
M(t)

I
+
WM(t)

I
(3.2.1)

where the, bi’s and ci’s are damping and stiffness coefficients, respectively, and we use the

specific values in [41] for the Edith Terkol : b1 = 0.0043 1/s, b2 = 0.0225 1/s2, c1 = 0.384

rad2/s2, c2 = 0.1296 rad2/s2, c3 = 1.0368 rad2/s2, c4 = −4.059 rad2/s2, c5 = 2.4052 rad2/s2,

and I = 1174 kg-m2 is the moment of inertia about the roll axis. The wave and wind mo-

ments, M(t) and WM(t), respectively, are generally modeled as stochastic processes, however,

for the purpose of our analysis we first consider them as deterministic forcing. The regular

(periodic) wave moment (for more details see [47, 45]) is modeled using

mreg
φ (t) =

M(t)

I
= α0ω

2
φπ
H

λ
sinχ sin(ωet+ ε) (3.2.2)

and for which the wave period is given by Te = 2π/ωe, ωe = 0.527 rad/s is the encounter

frequency (see Sect. B.2 for definition), ωφ =
√
c1 = 0.62 rad/s is the natural roll frequency

of the ship, α0 = 0.73 is the (nondimensional) effective wave slope and is assumed constant,

H is the wave height (in m) that will be used for parametric study, λ = 221.94 m is the

wavelength of the sea, χ is the incident angle of the waves called encounter angle and ε is the

phase of beam sea wave used to account for different positions of the ship in the traveling

wave.

To motivate the present study, let us express (3.2.1) in non-dimensional form and express

the restoring moment in the form of a potential energy. Let us use the natural roll frequency

as the time-scale, tφ = 1/ωφ, to obtain the new time variable t̄ as

t̄ =
t

tφ
= tωφ (3.2.3)
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Figure 3.2.2: The restoring moment, GZ(φ), for the ship Edith Terkol is shown in (a) and
the roll angle of vanishing stability, φv denotes the roll angle when the restoring moment
goes to zero. The potential energy, V (φ), that underlies the restoring moment and the roll
angle of vanishing stability is shown in (b).

and thus, the roll model becomes

˚̊φ = −φ− c̄2|φ|φ− c̄3φ
3 − c̄4|φ|φ3 − c̄5φ

5 − b̄1φ̊− b̄2|φ̊|φ̊+ H̄ sin(ω̄t̄) (3.2.4)

where φ̊ ≡ dφ
dt̄

, ˚̊φ ≡ d2φ
dt̄2

, and the eight nondimensional parameters are c̄i = ci/ω
2
φ (i =

2, 3, 4, 5), b̄1 = b1/ωφ, b̄2 = b2, ω̄ = ωe/ωφ, and H̄ = α0π
H
λ

. We can view the φ-dependent

portion, that is the restoring moment GZ(φ), of the right-hand-side of (3.2.4) as coming from

a potential energy,

V (φ) = 1
2
φ2 + c̄2

3
|φ|φ2 + c̄3

4
φ4 + c̄4

5
|φ|φ4 + c̄5

6
φ6 (3.2.5)

as in Fig. 3.2(b), so that (3.2.4) can be written as

˚̊φ = −dV
dφ
− b̄1φ̊− b̄2|φ̊|φ̊+ H̄ sin(ω̄t̄) (3.2.6)

Notice that from the symmetrical potential V (φ), there are symmetrical unstable equilibria

50



at φv = ±0.8561 rad. This is slightly less than the value of ±0.88 rad reported in [47]. While

the unstable equilibria can be used as the threshold for stability of a ship, for the purpose

of comparison, we use the value adopted in [47], [41]. We note that [41] merely claimed

that they ‘chose’ φv = 0.88 rad to correspond to capsize, not because it coincided with the

unstable equilibrium, but because this was the roll angle at which the ship actually capsized.

We can transform the ordinary differential equations (3.2.6) into first-order form given by

φ̊ = ω

ω̊ = −dV
dφ
− b̄1ω − b̄2|ω|ω + H̄ sin(ω̄t̄).

(3.2.7)

We will use one period of the wave forcing, T̄ = 2π/ω̄, to define a stroboscopic time-T̄ map

f given by (φ(0), ω(0)) 7→ (φ(T̄ ), ω(T̄ )). Since φ ∈ S1 and ω ∈ R, the dynamical system lives

on the cylinder, S1 × R. However, we will only consider a subset, D ⊂ S1 × R (for example

D = [−φv, φv] × R), based on the idea that motion beyond roll angle of vanishing stability

has no relevance from the control of capsize perspective since at that point, unavoidable

capsize has already occurred.

Let us consider the geometric picture of trajectories that lead to the inevitable capsize of

a ship. This is typically studied in terms of an exit basin (cf. [48],) which shows regions

of phase space that do not lead to capsize for a given time of the flow and will be denoted

as the non-capsize basin. The erosion of non-capsize basin is the crux of transient capsize

study in [41] who used 16 wave periods and different wave heights for predicting loss of ship’s

stability. However, for a ship with limited control authority in periodic waves, we assume 1

wave period as the time scale to avoid capsize. Thus, we show the non-capsize basin for three

different wave heights in Fig. 3.2.3 for the 1 wave period which agrees with the result of [41].

The non-capsize basin for 1 wave period provides the set of initial conditions for a ship to

sustain the rolling motion in periodic waves. Thus, if we start a ship’s rolling motion in

the non-capsize basin, the ship will not capsize during the next wave period and if the state
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wanders off we should only then apply a control to bring it back into the non-capsize basin.

Thus, the objective of keeping a ship safe, in presence of disturbance, can be understood
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Figure 3.2.3: Non-capsize basin in the phase space of roll model where the gray region
denotes initial conditions that do not lead to capsize during 1 T̄ (nondimensional wave
period) for wave heights H = 3.28 m, H = 4.92 m, and H = 9.84 m in Fig. 3.3(a)- 3.3(c).
The parameters are for the ship Edith Terkol and it should be noted that in Fig. 3.2.3, the
nondimensional wave period corresponds to beam seas (χ = 90 deg), so the ship’s forward
speed has no effect on the encounter frequency which is equal to the wave frequency ( [42,
chap.2]) in beam seas. This means the non-capsize basin is for waves of different heights are
incident on the ship at same encounter frequency.

as keeping the states of rolling motion inside the non-capsize basin for a given wave height.

If this approach can be repeated for all the successive wave periods, the ship can avoid

inevitable capsize. Hence, control strategies for capsize will benefit from understanding the

specific structure of the non-capsize basin. This can be explained using a geometric view of

how regions get mapped out of the right and left boundaries which denote the roll angle of

vanishing stability. First to verify the non-capsize basin, let us consider the boundaries

n+ = {(φv, ω)| − 0.88 6 ω 6 0.88} (3.2.8)

n− = {(−φv, ω)| − 0.88 6 ω 6 0.88} (3.2.9)

which are shown in Fig. 3.4(a). By definition of construction of the non-capsize basin shown

as the gray set in Fig. 3.4(a), the pre-image of the left and right boundaries are the initial

conditions that get mapped to the boundary. Thus, the non-capsize basin is outlined by the
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pre-image, in t = T̄ , of points on the boundary and the stripes near the top and bottom of

the domain denote regions which are mapped to the boundary in time, t < T̄ . Furthermore,

to elucidate the phase space structure of the non-capsize basin, we can use the approach

of lobe dynamics which was developed in [7, 6] for explaining chaotic transport in phase

space. The theory of lobe dynamics is based on the intersection and segments of invariant

manifolds of the perturbed saddle equilibrium points, which form lobes and their forward

and backward iterates under the map. When we consider the unforced form of (3.2.7), the

manifolds do not intersect and form the boundary between bounded and unbounded motion.

The initial conditions in the region of bounded motion (basin of attraction of the center sink

denoted as p0 in Fig. 3.4(b)) corresponds to rolling motion that will eventually die out due

to damping while those in the region of unbounded motion will lead to inevitable capsize.

However, with addition of periodic forcing, basin of attraction of the center sink, p0, gets

eroded by successive fragmentation due to the lobes. This is shown in Fig. 3.4(c) as the

lobe Ltb,u(1) between the intersection point, qt, (boundary intersection point or bip with

superscript denoting top segments of the manifolds) and the intersection point, qt1 (primary

intersection point or pip). The other lobe Lbb,u(1) is formed between the points qb1 and f−1(qb)

from the bottom segments of the manifolds. In 1 forward iterate of the stroboscopic time-T̄

map f , regions inside the lobes will get mapped outside region of the bounded motion (region

bounded by the perturbed manifolds intersecting at p±, qt and qb) into region of unbounded

motion. Since the present study is concerned with only regions inside the domain D and

that leaves it in 1 forward iterate, we only get a subset of the second lobe that maps outside

our domain. The forward mapping out of the domain using the two lobes is explained in

the schematic Fig. 3.4(d). Thus, the invariant manifolds and lobe dynamics elucidate the

geometric structure of non-capsize basin that forms the basis for avoiding capsize. Next, we

consider a much worse scenario where a random disturbance acts along with the harmonically

varying regular wave forcing. Our objective is to adopt the approach of partial control for

avoiding capsize in the presence of a random disturbance using a control which is smaller
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Figure 3.2.4: (a) Pre-image of the left (green) and right (magenta) boundaries for a wave
height of H = 9.84 m and the non-capsize basin shown as the gray region. (b) Invariant
manifolds for the unforced form of roll model (3.2.7) where the red curves denote the unstable
and blue denotes the stable manifolds of the saddle p±, respectively. Due to damping, stable
and unstable manifolds of the saddles are not connected by a heteroclinic orbit and instead
unstable manifolds connect to the center sink at p0.

than the disturbance.
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3.3 Partial control of escaping dynamics:

The model (3.2.7) for a ship’s rolling motion does not take into account effects of higher order

coupled fluid-structure interaction, nonlinear coupling of other degrees of freedom and the

wind moment. However, in a practical situation, we can estimate an upper bound for these

disturbances using information on sea conditions and a ship’s response to such forcing. Once

this upper bound is obtained, which we refer to as the upper bound on discrete disturbance

magnitude ξmax acting at the end of the time-T̄ map, it is of interest to ascertain the safety

of a ship given an upper bound on the discrete feedback control, umax, particularly for the

case umax < ξmax. We note here that if umax > ξmax, one could merely apply a control to

exactly cancel disturbances, umax = −ξmax, to guarantee safety, so we do not consider this

case.

The case of smaller controls than disturbances is where the partial control framework (put

forward in [49, 50, 51, 52]) can be applied. More importantly, we only need the upper bounds

of a random disturbance, and control to obtain regions in the phase space domain D such

that an appropriate control can be found which avoids capsize for any possible sequence of

the bounded disturbance. In fact, when this region in phase space exists it is referred to as

the safe set, S.

We present a mathematical description of this framework for the sake of completeness (see

also Sabuco et al. in [52, 51]) . Let us consider we want to keep the dynamics in a closed

and bounded domain Q, a subset of the domain D, which is in the phase space Ω ⊂ Rk.

There is a map f : Ω → Ω, acting on the points qn ∈ Ω such that the discrete map from

time n to time (n+ 1) is

qn+1 = f(qn) (3.3.1)

We assume this iterate of the map is acted upon by a bounded disturbance vector, often

considered to be derived from a random noise, ξn and an appropriately chosen feedback
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control vector, un. This generates the admissible trajectory and given by

qn+1 = f(qn) + ξn + un (3.3.2)

where, ξn ∈ Bk(ξmax) and un ∈ Bk(umax) are called the admissible disturbance and admissible

control respectively where Bk(r) is the closed ball of radius r around the origin in Rk, and

where umax < ξmax. With the constraints on the disturbance and control, we call a set S ⊂ Q

safe set if for each initial point q0 ∈ S there is an admissible trajectory, {q1, q2, . . .} where

qn ∈ S for all n > 1. This safe set is computed using an iterative algorithm that converges

to the safe set S. We show the pseudo-code in Procedure 1 (cf. [51]) and is called safe set

sculpting. Once the safe set is computed, for a given ξmax and umax, using this procedure

Procedure 1 Safe set sculpting algorithm

Input: Set initial set, C1 = Q, and i = 1, maximum iteration, imax and number of bad
points in Q, Ncut 6= 0
while i <= imax do

Fatten the set, Ci by maximum control magnitude u0 so, C ′i = Ci + umax.
Shrink the set, C ′i by disturbance ξ0 so, C ′′i = C ′i − ξmax .
Cut the unsafe subsets of the set, Ci. A subset is unsafe if there exists q ∈ Ci such

that f(q) /∈ C ′′i .
Compute number of unsafe points removed in this iteration, Ncut and set Ci+1 = Ci

and update, i = i+ 1.
end while

we can obtain the control, un, and controlled trajectory, qn, n > 1 for any sequence of the

disturbance.

3.3.1 Tent map example

Before proceeding to a ship’s rolling motion, let us consider the tent map, a prototypical ex-

ample, from classical dynamical systems, to understand the main strategy of partial control.
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The one-dimensional tent map is defined as f : R→ R, where

f(q) := 3− 3|q| and q ∈ R, so qn+1 = 3− 3|qn|+ ξn + un

and we want the iterates of an initial condition to stay in a chosen set, Q = [−3/2, 3/2].

Since the iterates of any initial condition diverge to −∞ in absence of control, it is non-trivial

to keep the trajectory in the given Q. However, using the safe set sculpting algorithm we

find the safe set to be S = {−1, 1} in presence of disturbances with upper bound, ξ0 = 2

and control upper bound, u0 = 1. This means we can always keep the iterates of the initial

conditions in S ⊂ Q by applying un, where |un| 6 u0, in presence of a disturbance ξn,

where |ξn| 6 ξ0. For a practitioner, the safe set S and the upper bounds are the a priori

information that is required to avoid catastrophic events.

3.4 Application to ship rolling motion and capsize

In this section, we develop the ingredients for applying partial control to avoid capsize of

a ship for two cases: (1) a regular sea (train of periodic waves) with some uncertainty in

wave height and (ii) an irregular sea (train of random waves) that represents rough sea

conditions. This study will be performed for the capsized Danish tanker Edith Terkol but

the ingredients can be suitably altered for other capsized vessels to test the viability of partial

control. Based on the earlier discussion on roll angle of vanishing stability, we will adopt

the domain D = [−0.88, 0.88]× [−0.88, 0.88] for computation of the safe sets. This is chosen

as such since roll angle exceeding the roll angle of vanishing stability will mean leaving the

domain from either the left or right boundary.
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Figure 3.3.1: Partial control applied to slope-3 tent map with Q = [−1.5, 1.5] as the region we
want to keep the admissible trajectory. Figs. (a), (b), and (c) shows the first 10 iterations, the
admissible disturbance that acts at each iteration and the admissible control that is applied
at each iteration, and the obtained admissible trajectory for 100 iterations, respectively,
for ξmax = 2, umax = 1. Figs. (d), (f), and (e) shows the same for ξmax = 2/3, umax = 1/3.
Figs. (a) and (d) showQ as the grey closed set on R,and the cyan dots are the safe set, S which
is either {−1, 1} or {−1−1/3,−1+1/3, 1−1/3, 1+1/3} for the two cases, respectively. The
black dot denote iterates of the tent map while the red dots denote points after disturbance
has acted on the iterate. The admissible trajectory is shown as green dots which are in S
and hence in Q, and obtained using control that is always less than the disturbance as shown
in Figs. (b) and (e).

Regular sea

We consider the ship is experiencing a train of periodic waves at an encounter angle of

χ = 90 deg, typically called beam waves. In addition to the periodic forcing, we assume

a disturbance of certain magnitude acts on the ship at the end of each wave period. This

can be interpreted as the effect of small variations, which is distributed over the period, in

the wave height. This scenario will eventually cause a ship to capsize, that is escape the
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potential well, if appropriate control measures are not adopted. To this end, we apply the

partial control approach to avoid escape from the potential well.

The basic ingredients for applying partial control is the map f , a region of the phase space

where f acts, admissible disturbance and admissible control. We will resolve these ingredients

one at a time. In the case of regular seas, the ship roll dynamics is converted into a two-

dimensional map by considering the flow over 1 wave period. Furthermore, a ship capsizes

when the roll angle exceeds the roll angle of vanishing stability, φv = 0.88 rad and we are

interested in the region where initial conditions do not lead to capsize in 1 wave period.

Since, with the repetitive application od the discrete control we can keep the trajectory

away from capsize.

This non-capsizing set constitutes the region where we want to sustain the ship’s rolling

motion with a given disturbance. This set is identical to the basin used in transient capsize

analysis for 1 wave period except our goal is to keep a ship’s motion in this set in presence

of a disturbance. The initial set for a wave height of H = 4.92 m for Edith Terkol (refer

section on description of roll model for other parameters) is shown in Fig. 3.4.1.

A point to note here is that the safe sets are computed for a given ξmax and umax and initial

set, Q. To initialize the computations, we add ξmax to the map f such that all safe states

in Q become unsafe. For this upper bound of disturbance, we initialize umax near ξmax and

sculpt the safe set. This procedure is repeated with successive lower values of umax until

there are no safe sets and the value of umax at which this occurs is called the minimum

control required for the safe set to exist, uminmax. Furthermore, when a trajectory is partially

controlled the long term behavior is of interest as that denotes the region of the safe set that

is visited by the admissible trajectory as t→∞.
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ξ0

u0

(a) Initial set,Q

Figure 3.4.1: Fig. 3.1(a) shows the initial set (also referred in [41] as the safe basin) under
the wave forcing for 1 Te, H = 4.94 m. Final safe set (blue region) shown here denote
the initial conditions that are for a control upper bound, umax = 0.096988 and disturbance,
ξmax = 0.15314 with safe ratio, ρ = 0.63. The grid resolution was 1001 × 1001 and the
wave height H = 4.92 m. The control upper bound is very close to the minimum value of
umin0 = 0.096477 below which the safe set vanishes.

Rough sea

In order to relate the notion of discrete disturbance, ξmax, with continuous random wave

forcing, we need to accumulate the contribution over a time range in a systematic approach.

When a ship encounters realistic high seas, which are aperiodic, the forcing can be interpreted

as a sum of the system without any waves and the discrete disturbance, ξn applied at the

end of a given time length. It is at this instant that the feedback control, un, is applied

and just enough to avoid catastrophic event like capsize due to roll exceeding the angle of

vanishing stability.

For the roll model, the random sea waves are generated from an energy spectrum and modeled

as time-dependent angular accelerations affecting the roll DOF as

mφ(t) = ω2
φ sinχα0

√
2dω

g

N∑
i=1

ω2
i

√
S(ωi) sin(ωiet+ εi) (3.4.1)

where, ωφ is the natural roll frequency for a ship (here, Edith Terkol) and S(ωi) is the
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(a) (b)

(c)

Figure 3.4.2: Fig. 3.2(a) shows the initial set, Q (as blue region), and the controlled trajectory
(marked as black x).Q is the set of initial condition that don’t lead to capsize over 1 period
of the regular sea of 4.94 m wave height. The noise is assumed to be uniformly distributed
with upper bound of ξmax = 0.15314 and acts at the end of every period as shown (in red)
in Fig. 3.2(b).

wave energy spectrum, known as Pierson-Moskowitz spectrum defined here, that generates

a particular sea environment and is given by

S(ωi) = 0.11H2
s

ω4
z

ω5
i

exp

(
−0.44

(
ωz
ωi

)4
)

(3.4.2)

and shown in Fig. 4.4(a). The encounter frequency (frequency experienced by the ship’s
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Figure 3.4.3: Ocean wave spectrum given by Eqn. (4.3.4) that is used to generate the con-
tinuous wave forcing in rough seas.

reference frame) is given by

ωie = ωi −
ω2
iU

g
cosχ (3.4.3)

where, U is the ship’s speed and χ is the heading angle of the waves with respect to the

ship. Using a discrete approximation to the continuous spectrum, given by Eqn. (4.3.4), we

generate a train of aperiodic signals that simulate a rough sea.
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Figure 3.4.4: The wave energy spectrum of the rough sea used in the computations. A
sample ensemble of trajectories for random sea waves of significant height, H = 4.94m
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Figure 3.4.5: Safe set for rough seas of wave height Hs = 4.94 m while the partial control
time, tpc = 2 secs obtained for a safe ratio of 0.925

(a)

Safe ratio, ;
0.6 0.7 0.8 0.9 1

Se
t a

re
a 

sc
al

ed
 b

y 
ar

ea
 o

f Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H=4.94m

H=9.84m

Safe set,S
Asymptotic safe set, A

(b)

Figure 3.4.6: Figures showing the safe set and asymptotic safe set which is almost equal to
the safe set.
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3.5 Conclusions

In this article, we present geometric approach of understanding escape from a potential well

in the context of a ship motion and capsize using a single degree of freedom model. This

is a classical model in naval architecture and ocean engineering with promising results on

predicting capsize of a ship in regular and rough sea. Our contribution is the consideration

of disturbance, that accounts for unmodeled effects, on the non-capsize basin (typically

called safe basin). We also present the application of a control approach that is based on

avoiding capsize using a control smaller than the disturbance. This has implications for large

amplitude roll motions, and can provide guiding principles for designing avoidance strategies

in rough seas.
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Appendix B

B.1 Wave height parameter

The wave height parameters defined in ocean engineering and nonlinear dynamics literature

for the modeling of regular waves need to be connected for comparing previously published

results.

HST = H̄ = α0π
H

λ
(B.1–1)

where, HST is the non-dimensional wave height parameter adopted in [41] as HST = Hsh.

In case of regular waves, which are modeled as periodic/sine waves, the notion of significant

wave height does not hold and we refer to H as wave height parameter and double-amplitude

(brief description in Sect.2.2 in [42]) as the wave height.

B.2 Modeling wave excitation

If a ship is still relative to the waves, the sea wave frequency experienced by an observer in

the ship is exactly as the wave frequency, ωw. However, if the ship is moving with a velocity

component in the direction of propagating wave, the observer experiences the encounter
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frequency, ωe due to Doppler effect and is given by

ωe = ωw −
ω2
wU

g
cos(χ) (B.2–1)

where, U is the average velocity of the ship, and g is acceleration due to gravity.

B.3 Algorithm for obtaining initial set

For the ship capsize problem, a state is called safe if the instantaneous roll angle is less

than the critical roll angle |φt| < φcritical in the next wave encounter cycle. Thus, a capsize

state is when the roll angle |φt| exceeds or equals φcritical, which for the ship Edith Terkol is

0.88 rad. Based on the conclusion from the non-dimensional potential shown in Fig. 3.2.2,

we consider the domain [−0.88, 0.88] × [−0.52, 0.52] where the ship remains safe under the

disturbance ξn and using the control un. We define the closed and bounded initial set, Q, as

the set of points p in the domain that are safe for all t ∈ [0, 1 Te]. This step of the partial

control algorithm is referred to as grid generator described in Alg. 2. and the initial set is

shown in Fig. 3.1(a).

Procedure 2 Pseudo-code to obtain the initial set and its image

Set parameter values and no of grid points, N2

for all i ∈ 1 : N and j ∈ 1 : N do
Set initial condition to (φi, φ̇j) and integrate for time mT , with the event function

|φ| − φcritical
Check for all directions of the event crossing, terminate integration if satisfied.
If event state vector is not empty, (φi, φ̇j) initial condition is in capsize/forbidden

region.
end for
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Figure B.3.1: Showing the algorithm 2 as a schematic for computing the initial set Q.
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Chapter 4

Cylindrical manifolds and partial

control: Application to coupled

roll-pitch ship motion

In collaboration with Shane D. Ross

4.1 Introduction

Ship dynamics and modeling. Since ancient times ships have remained a crucial element

in all arenas of life and society and hence the problem of ship capsize has received considerable

attention to avoid catastrophe while out at sea. Initially, this problem was tackled assuming

a linear response, and stability of a ship was analyzed under steady state assumptions.

However, the results from linear analysis only remain true for small amplitude motion and

underestimate the critical conditions leading to capsize, which are primarily large amplitude,

complicated nonlinear phenomena [41]. The primary objective of analyzing such models for

different sea states is to generate initial conditions that lead to imminent capsize, or predict
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a range of parameter values that should be avoided to retain stability [53]. These models

are typically analyzed using the computational and semi-analytical approaches that use the

geometric features of the phase space such as the basin of attraction, and basin boundary.

These concepts give rise to tools for analyzing ship capsize, such as the transient capsize

diagram, the index of capsizability, and integrity measure [12]. The major traction for these

concepts and tools is that they are conceptually simpler for obtaining initial conditions

leading to capsize, and they also provide realistic prediction of transient behavior of capsize

via the fractal like structure of the basin boundary as opposed to steady state analysis. For

design engineers, this approach can serve as a first step towards a comprehensive investigation

using either physical model tests or extensive numerical solutions of coupled fluid-vessel

models. Furthermore, for control engineers, the geometric view point provides critical regions

in the phase space that should be avoided for safety in rough seas.

Capsize criteria and analysis. Typically, a ship’s static stability is governed by the GZ-

curve which is dependent on the heel angle and provides a measure of the restoring moment

experienced by the ship when disturbed from its equilibrium position. Hence, stability

analysis based on the GZ-curve is an important first step for ship design. But this analysis

ignores the nonlinear coupling with other dynamic degrees of freedom which are significant

near capsize, for example, roll-pitch, and pitch-heave [54], [44]. On the other hand, a complete

mathematical model for the motion of a ship includes the six degrees of freedom (associated

with a rigid body and as shown in Fig. 4.1(a)) coupled with the fluid dynamics of the sea.

This description of the capsize problem gives rise to an infinite dimensional model (or high

dimensional reduced order model) which challenges the identification of critical behavior

leading to capsize. Hence, a middle ground of using multi-degree of freedom model that is

simple and low dimensional for geometric analysis, but still captures the nonlinear behavior

near capsize, will lead to reliable criteria.

Roll-pitch nonlinear coupling. It was observed as early as 1863, by William Froude, that

a ship’s roll response shows undesirable behavior due to autoparametric resonance when the
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pitch natural (free oscillation) frequency is twice that of roll natural frequency. To explain

this observation, Ref. [55] first proposed that pitch motion can be modeled as a simple

harmonic oscillator which then substituted in the roll equation results in a Mathieu-type

equation. Thus, this model assumed that pitch affects roll dynamics just as an amplitude-

frequency dependent parameter causes resonance in the Mathieu equation. Although this

explained the observed parametric response, it also showed exponential instabilities that

resulted from not considering the effect of roll on pitch dynamics. However, a more successful

attempt at modeling the pitch and roll coupling which is crucial for capsize was proposed

in Refs. [56, 57], and explored further in Ref. [58]. In this model, the coupling is introduced

using a bilinear term in the equation of motion for roll, and via a quadratic term in the

equation of motion for pitch. Even with this simple form of nonlinearity, the authors in

Refs. [56, 57, 58] present an explanation for the undesirable roll motion and various roll-

pitch resonance phenomena. The couplings of multiple state variables can significantly alter

predictions of safety versus capsize, as emphasized in Refs. [59, 60]. Considering the success

of the coupled roll-pitch model in predicting observed behavior, we adopt this model for

analyzing the large amplitude motions in terms of the geometric view of the phase space for

understanding ship capsize in rough seas. Thus, we attempt to introduce conceptual aids for

multi-degree of freedom systems which help in systematic interpretation of dynamics that

lead to capsize.

Geometric view and escaping dynamics. The main goal in studying capsize of a ship

is to obtain initial conditions that lead to undesirable roll motion in the presence of waves.

This can be done by performing capsize runs in laboratory experiments of dynamically

similar test models [61] along with the prediction of response from the mathematical model.

This is where taking a geometric view of the phase space for identifying capsize becomes

insightful. First, this approach provides a skeleton on which the forced dynamics is built,

and provides a classification of orbits that lead to imminent capsize. Secondly, one can use

this understanding to provide control strategies in presence of wave forcing. This is done by
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uncovering the potential energy underlying the coupled roll-pitch motion and then using it in

the context of escaping dynamics which treats the motion as either bounded or unbounded.

Furthermore, the theory of invariant manifolds reveals the pathways in phase space that

form the skeleton, even in the presence of random forcing. Thus, the present study aims to

adopt the nonlinear coupling of roll-pitch motion as an application of escaping dynamics and

invariant manifolds, laying the foundation for a new approach to the avoidance of capsize.

More general applications to avoidance of escape in multi-degree of freedom systems can be

made.

4.2 Description of coupled roll-pitch model

We consider the dynamics of the nonlinear coupling of the roll and pitch degrees of freedom

of a ship that results in a 4-dimensional phase space of roll, pitch, roll velocity and pitch

velocity. The two degree of freedom coupled roll-pitch system has received some attention

using perturbation analysis [56, 57, 58, 62, 63]. However, we adopt a global geometric

approach of the motion analysis, using techniques which have been successful in celestial

mechanics and physical chemistry [11, 64, 65]. We start by describing the system in terms

of Lagrange’s equations of motion and then re-scaling the system appropriately to recast it

into a form with the fewest parameters.

4.2.1 Equations of motion: Lagrangian approach

Based on Refs. [56, 57, 58], we consider the coupled roll and pitch equations of the form

Ixxφ̈ = −Kφφ−Kφθφθ + τφ(t)

Iyyθ̈ = −Kθθ −
1

2
Kφθφ

2 + τθ(t)
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where, φ and θ are roll and pitch angles (in radians), Ixx and Iyy are the sums of the second

moments of inertia and hydrostatic inertia, Kφ and Kθ are the linear rotational stiffness

related to square of the corresponding natural frequency, Kφθ is the nonlinear coupling

coefficient. Further, τφ(t) and τθ(t) are generalized time-dependent torques in the roll and

pitch directions, respectively, which do not necessarily arise from an effective potential energy

(for example, damping and wind/wave forcing). These equations are equivalent to Lagrange’s

equations with the Lagrangian given by

L(φ, θ, φ̇, θ̇) =T (φ̇, θ̇)− V(φ, θ)

=

(
1

2
Ixxφ̇

2 +
1

2
Iyyθ̇

2

)
−
(

1

2
Kφφ

2 +
1

2
Kθθ

2 +
1

2
Kφθφ

2θ

)

and the kinetic and potential energy denoted by T (φ̇, θ̇), and V(φ, θ), respectively, and

generalized non-conservative forces τφ(t) and τθ(t). The resulting Lagrange’s equations of
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Figure 4.2.1: Schematic adapted from [66] illustrating the wave characteristics relative to
ship motion using (x, y, z) as the body-fixed reference frame.

motion can be recast into a form

φ̈ = −ω2
φφ+ 2K1φθ +mφ(t)

θ̈ = −ω2
θθ +K1

Ixx
Iyy

φ2 +mθ(t)
(4.2.1)
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where the coefficients are

ωφ =

√
Kφ

Ixx
, ωθ =

√
Mθ

Iyy
, K1 = −Kφθ

2Ixx
, mφ(t) =

τφ(t)

Ixx
, mθ(t) =

τθ(t)

Iyy

Rescaled equations of motion. The conservative dynamics, when mφ(t) = mθ(t) = 0,

of the system (4.2.1) is dependent on four parameters: the natural roll frequency (ωφ), the

natural pitch frequency (ωθ), the nonlinear coupling constant (K1), and the ratio of second

moments of inertia (Ixx/Iyy). The conservative system has saddle equilibrium points at

(±φe, θe), where

φe =
ωφωθ

K1

√
2

√
Iyy
Ixx

, θe =
ω2
φ

2K1

and φe is also called the roll angle of vanishing stability and θe is the corresponding pitch

angle. The coordinates of saddle equilibrium points (roll and pitch angles of vanishing

stability) can now be used to rescale the original (φ, θ) coordinates to a nondimensional

set (x, y). Furthermore, the natural roll frequency can be used as the time scale to obtain

nondimensional time, t̄. We define

x =
φ

φe
, y =

θ

2θe
, t̄ = ωφt (4.2.2)

and the equations of motion (4.2.1) become

˚̊x = −x+ 2xy + fx(t̄)

˚̊y = −R2y +
1

2
R2x2 + fy(t̄)

(4.2.3)

where (̊·) denotes the time derivative with respect to the nondimensional time, t̄ and R =

ωθ/ωφ denotes the ratio of pitch to roll natural frequencies as the only system parameter for

the conservative dynamics. From now on, we will drop the bar on t̄ and rescaled time will
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be understood. These are Lagrange’s equations of motion with rescaled Lagrangian

L(x, y, x̊, ẙ) =
1

2
x̊2 +

1

2

(
2

R2

)
ẙ2 −

(
1

2
x2 + y2 − x2y

)
(4.2.4)

where the rescaled potential energy is given by

V (x, y) =
1

2
x2 + y2 − x2y (4.2.5)

which is independent of the only system parameter, R, and is shown graphically in Fig. 4.2(a).

The rescaling of the coordinates and time has made the nonlinear coupling term of the po-
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Figure 4.2.2: (a) Shows the effective potential energy with an upright ship in the region
that corresponds to bounded motion inside the well and a capsized ship in the region that
corresponds to unbounded motion. The total energy of the system can be considered as
fixing a height of this potential well and shown here as contour lines of 0.5Ee, Ee, 2Ee, 4Ee.
(b) Shows the total energy as contour lines on the configuration space (x, y) for different
values above and below the critical energy Ee.

tential into unity and the original coordinates can always be recovered using the transforma-

tion (4.2.2). We note that equations 4.2.3 are identical to those derived by Ref. [14], where

they were called symmetric internal resonance equations. The potential energy (4.2.5) is

also similar to the Barbaris potential studied by the chemistry community [67, 68, 69].

Conservative form. The equation of motion in the absence of damping and forcing (fx(t) =
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fy(t) = 0) can be expressed in first order form as

x̊ = vx

ẙ = vy

v̊x = −x+ 2xy

v̊y = −R2y +
1

2
R2x2

(4.2.6)

which conserves the total energy

E(x, y, vx, vy) =
1

2
v2
x +

1

R2
v2
y +

1

2
x2 + y2 − x2y (4.2.7)

Non-conservative form. Any non-potential and time-varying generalized forces (fx(t), fy(t))

on the right hand side of (4.2.8)

x̊ = vx

ẙ = vy

v̊x = −x+ 2xy + fx(t)

v̊y = −R2y +
1

2
R2x2 + fy(t)

(4.2.8)

can be written in terms of the original angular accelerations (mφ(t),mθ(t)), that is,

fx(t) =
K1

ω4
φ

√
2

R

√
Ixx
Iyy

mφ(t), fy(t) =
K1

ω4
φ

mθ(t̄) (4.2.9)

When fx(t) and fy(t) are non-zero, the total energy changes with time according to

E̊ = vxfx(t) +
2

R2
vyfy(t) = 〈v, f〉 (4.2.10)

where 〈·〉 denotes the dot product of the velocity vector, v = (vx, vy), and the augmented
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force vector, f = (fx, (2/R
2)fy). This energy evolution equation acts as the constraint on

how quickly the dynamics can qualitatively change and go from below the critical energy

(energy of the saddle points) to above when capsize is possible. In particular, if we consider

including any damping forces linear in v of the form

fi = −k(x, y, vx, vy)vi where, k(x, y, vx, vy) > 0 (4.2.11)

then such forces can only lead to a decrease in energy while a generalized time-dependent

forcing, in particular an arbitrary signal fi(t), such as encountered during random waves, can

lead to increase or decrease in energy. We should note here that in the non-conservative form,

energy can still be kept constant if the velocity vector (vx, vy) is orthogonal to (fx, (2/R
2)fy).

4.2.2 Energy surface

LetM(e) be the energy surface given by setting the integral (4.2.7) equal to a constant, i.e.,

M(e) = {(x, y, vx, vy)|E(x, y, vx, vy) = e} (4.2.12)

where e denotes the constant value of energy. For a fixed energy e, one can consider the

surfaceM(e) as a three-dimensional surface embedded in the four-dimensional phase space,

R4 and thus, co-dimension 1. Furthermore, if we take a cross-section of this three-dimensional

surface, we obtain a two-dimensional Poincaré surface-of-section (SOS). The SOS can be used

to define a two-dimensional return map (R2 → R2) for a constant energy, e. This is shown

for successively increasing energy in Fig. 4.2.3, and R = 1.6, for the SOS defined as

U1 = {(y, vy)|x = 0, vx(y, vy; e) > 0} , motion to the right (4.2.13)

U2 = {(y, vy)|x = 0, vx(y, vy; e) < 0} , motion to the left (4.2.14)
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where, vx > 0 is used to enforce a directional crossing of the surface. The energy of the

equilibrium points is called the critical energy (or escaping energy) which is given by Ee =

0.25. As the trajectories approach this energy from below, capsize becomes inevitable and

this can be interpreted in terms of the potential energy well. Since the potential energy (4.2.5)

is independent of any system parameter, the discussion based on this potential well will be

more general.

(a) e = 0.22 (b) e = 0.25 (c) e = 0.28

Figure 4.2.3: Poincaré surface-of-section (SOS) of the energy surface, showing orbits of the
return map for different energy values. In the absence of damping and wave forcing, the
system conserves energy and for energy below the critical value, Ee, all the trajectories
intersect the SOS (4.2.13) as shown in (a) and (b) for e = 0.22 and e = 0.25. When
the energy is above the critical value, trajectories leading to capsize do not intersect the
surface (4.2.13) any longer and hence less return orbits are shown in (c)

Potential well and critical energy

We recall that the total energy (4.2.7) of the conservative system can be fixed at a constant

value, i.e., E(x, y, vx, vy) = e, and this is equivalent to fixing a height in the plot of the

effective potential, V (x, y). Considering the configuration space, (x, y), projection of effective

potential in Fig. 4.2(b), we note that there are two equilibrium points (they are rank-1
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saddles, as we will show later) in the (x, y) plane at (±1, 1/2) which are symmetrically located

about the y-axis. Furthermore, the total energy of the system can be shown as a height on

the potential surface and for a conservative system all possible states can only explore the

surface below this value. For example, we show the contour lines of 0.5Ee, Ee, 2Ee, 4Ee in

Fig. 4.2(a) and 4.2(b). Thus, the critical energy divides the motion into two energy cases

which can simplify the understanding even when forcing is added.

1. Case 1, E(x, y, vx, vy) < Ee: If the energy is below Ee, the ship is safe against capsize

as the state can not move from the region of bounded motion (surrounding the origin)

to the region of unbounded motion i.e., capsize (beyond the saddles). See Fig. 4.4(a)

2. Case 2, E(x, y, vx, vy) > Ee: If the energy is just above Ee, two “bottlenecks” between

the region of unbounded motion and bounded motion open up around the saddle points,

permitting trajectories to move between the two realms. We will show in the next

section that the transport through the bottlenecks connecting the two adjacent regions

is controlled by invariant manifolds associated with the saddle points. See Fig. 4.4(c)

(a) (b) (c)

Figure 4.2.4: (a), (b), and (c) show the Hill’s region for e < Ee, e = Ee, and e > Ee where Ee
denotes the critical energy. The white region is the energetically accessible region bounded
by the zero velocity curve and while the gray region is the energetically forbidden realm
where kinetic energy is negative and motion is impossible.
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Hill’s region and zero velocity curve

The projection of energy surface into configuration space, (x, y) plane, is the region of en-

ergetically possible rolling and pitching motion of a ship of energy e. Let M(e) denote this

projection defined as

M(e) = {(x, y)|V (x, y) 6 e} (4.2.15)

where V (x, y) is the potential energy as in (4.2.5). The projection (4.2.15) of energy surface

is known historically in mechanics as the Hill’s region. The boundary of M(e) is known as

the zero velocity curve, and plays an important role in placing bounds on the ship’s motion

for a given energy. The zero velocity curves are the locus of points in the (x, y) plane where

the kinetic energy, and hence the angular velocity vector vanishes, that is

E(x, y, vx, vy) = e =
1

2

(
v2
x +

2

R2
v2
y

)
+ V (x, y) (4.2.16)

v2
x +

2

R2
v2
y =2(e− V (x, y)) = 0 (4.2.17)

From (4.2.15), it is clear that the ship’s state is only able to move on the side of this curve

for which the kinetic energy is positive. The other side of the curve, where the kinetic energy

is negative and motion is impossible, will be referred to as the energetically forbidden realm.

4.2.3 Symmetries of the conservative equations of motion

We note the symmetries in the conservative system (4.2.6), when fx = 0 and fy = 0, by

substituting (−x,−vx) for (x, vx) which implies reflection about the y−axis and expressed

as

sx : (x, y, vx, vy, t)→ (−x, y,−vx, vy, t) (4.2.18)
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Thus, if (x(t), y(t), vx(t), vy(t)) is a solution to (4.2.6), then (−x(t), y(t),−vx(t), vy(t)) is

another solution. The conservative system also has time-reversal symmetry

st : (x, y, vx, vy, t)→ (x, y,−vx,−vy,−t) (4.2.19)

So, if (x(t), y(t), vx(t), vy(t)) is a solution to (4.2.6), then (x(−t), y(−t),−vx(−t),−vy(−t))

is another solution. These symmetries can be used to decrease the number of computations,

and to find special solutions. For example, any solution of the conservative system will

move so as to keep the energy E given by (4.2.7) constant. For fixed energy, there will

be zero velocity curves corresponding to V (x, y) = e, the contours shown in Fig. 4.2(b).

Any trajectory which touches the zero velocity curve at time t0 must retrace its path in

configuration space (i.e., q = (x, y) space),

q(−t+ t0) = q(t+ t0) q̊(−t+ t0) = −q̊(t+ t0) (4.2.20)

We note that y = vy = 0 is not an invariant manifold of the system, due to the nonzero

coupling term (i.e., K1 = 0), so no pure motion in roll (φ) is possible. However, x = vx = 0

is an invariant manifold, so pure motion in pitch (θ) is possible.

4.3 Invariant manifolds and ship capsize

4.3.1 Conservative dynamics

Tubes and transport. The global geometric view of capsize of a ship is to say the tra-

jectories will escape the potential well for energy states above the critical energy. This has

been known as escaping dynamics and can be systematically understood using invariant

manifolds which act as pathways for switching between capsize and non-capsize regions of

the phase space. When the phase space is R4, as in the dynamical system considered here,
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the invariant manifolds are co-dimension 1 in the phase space and topologically equivalent

to S1×R1. Due to this cylindrical geometry, they are referred to as cylindrical manifolds or

tubes [70] and the geometric framework they imply as tube dynamics. The physical property

of the tube manifold is that all motion that crosses a saddle equilibrium point must occur

through the interior of the corresponding tube manifold. Thus, the global transport of states

between the capsize and non-capsize realms in the phase space is mediated by the tubes.

Numerical approach. The invariant manifolds are global objects in the sense that they

exist in the entire phase space and can be numerically computed for infinite time. However,

the invariant manifolds are associated with the unstable periodic orbits in the equilibrium

regions around each saddle. This poses two challenges for the computation: saddle direc-

tions cause periodic orbit to be unstable, and exponential separation of trajectories on the

manifolds. Hence, we need approaches that use the linearized behavior near the equilibrium

points to generate the geometric structure of manifolds, and target periodic orbits of speci-

fied energy. This is where the theory of invariant manifolds of a periodic orbit and numerical

approach of globalization of manifolds can be useful.

We adopt the method for computing periodic orbits from [70]. The main idea of the com-

putation is to obtain a guess for the initial condition on the periodic orbit by using the

eigenvector in the center direction of the saddle equilibrium point. Then, using this ini-

tial guess a shooting type numerical procedure called differential correction is performed

to correct the initial guess. This shooting and correcting process is done iteratively with a

specified tolerance(≈ 10−8) until the initial condition for a periodic orbit of small amplitude

(≈ 10−4) is obtained. Then we begin the targeting step which aims for a specified energy of

the periodic orbit using numerical continuation and successively increases the amplitude of

the periodic orbit until the tolerance for energy of the orbit is satisfied.
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Algorithm for computing tube manifolds leading to imminent capsize

In this section, we go through the steps of computing tube manifolds that lead to imminent

capsize.

Step 1: Select an appropriate energy. We begin by deciding and selecting the total

energy of the ship at an initial instant and in absence of forcing, this total energy (4.2.7)

is conserved. Depending on whether the instantaneous energy is above or below the critical

value, Ee, the bottleneck around the equilibrium points either exist or do not exist. For

the purpose of our computations, we use values of E = 0.253, 0.28 or ∆E = 0.003, 0.03,

respectively, where ∆E = E − Ee, which correspond to energy at which bottlenecks exist

and tubes lead to imminent capsize. Furthermore, we will see in the following discussion that

the magnitude of ∆E is related to the width of the bottleneck and hence is very relevant to

the number of trajectories that lead to capsize.

Step 2: Compute the periodic orbit about the critical point of interest. Next, we

analyze the linearized dynamics near the saddle equilibrium points which extends to the full

nonlinear system due to the generalization of Lyapunov’s theorem by [71]. On one hand this

analysis simplifies the types of orbits that exist in the full phase space (see Appendix C.2 for

details) and on the other hand, this is also a straightforward procedure to compute periodic

orbits around the equilibrium points. We compute the non-trivial equilibrium points for the

conservative form of the system at (±1, 0.5, 0, 0). In the present discussion, we will generally

denote the left and right equilibrium points by (xe, ye, 0, 0) and call them as C1 and C2,

respectively, for specific notation.

Obtain guess for initial condition. The stability of these equilibrium point can be

obtained by linearizing the system about it and computing the eigenvalues. This computation

is shown in Appendix C.2 and we obtain eigenvalues (C.2–3) of the form ±λ and ±iν. The

complex eigenvalue and its corresponding eigenvector can now be used to generate a guess

for initial condition on the periodic orbit and its period T , which will be close to 2π/ν.
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Next, considering the saddle equilibrium point, C2, we construct the initial condition using

the general solution (C.2–8) of the linearized system (C.2–1). The initial conditions of a

periodic orbit (p.o.) of x−amplitude Ax > 0 can be computed by letting t = α1 = α2 = 0

and β = −Ax/2. This is now transformed back into the original coordinates and yields an

initial condition

x̄0 =

(
1,

1

2
, 0, 0

)
+ 2Re(βw1) (4.3.1)

where β = Ax/2 is a small amplitude. Thus, using the formula (C.2–6) we obtain the initial

guess as

x̄0 =

(
1 + Ax,

1

2
+

AxR
2

R2 − ν2
, 0, 0

)
(4.3.2)

Differential correction and numerical continuation. Now, with the guess for initial

condition in hand, we consider a shooting method for computing the periodic orbits around

C2 (and equivalently C1). This approach begins with small “seed” periodic orbits obtained

from the linearized equations of motion near C2, and uses differential correction and nu-

merical continuation to generate the desired p.o. corresponding to the selected energy, e.

The initial condition given in (4.3.2) will only yield a good approximation to a p.o. in the

nonlinear equations (4.2.6) in the case Ax << 1 which corresponds to a much smaller energy

than we selected in step 1. For the p.o. corresponding to the selected energy, e, the am-

plitude is larger than Ax and thus to obtain such an amplitude, we proceed as follows. Let

Ax1 < Ax2 << 1 be two small amplitudes with corresponding guess initial conditions x̄
(1)
0,g

and x̄
(2)
0,g, respectively, where g denotes that this is an initial guess to a true periodic solution

of (4.2.6).

We will use differential correction, described in Appendix C.4, to produce initial condition

that converge to a periodic orbit of energy e in the nonlinear equations which are accurate

to some specified tolerance d. The convergence criteria is based on the property of a periodic

orbit that it returns to the starting point after a given period. The computation of periodic

orbits and the corresponding period, for general time-dependent nonlinear systems, is a
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numerical field in its own right but we can use the knowledge of the center subspace to

initialize a shooting type procedure. Thus, if x̄po ≡ x̄0 is a true initial condition on a p.o.,

xpo(t), of period T , the convergence criteria requires

‖x̄po(T )− x̄po(0)‖ < d (4.3.3)

for a specified tolerance, d ≈ 10−6. Differential correction uses the analytical expression

of the first guess in an iterative process which shoots for the end point, checks the error

and updates the initial condition while keeping some values constant. In our case, we want

to keep the x-value constant and update the y-value of the guess initial condition for the

periodic orbit. Thus, the correction term (see C.4 for derivation) is given by

δy0 =

(
Φ32 − Φ42

v̊x1
v̊y1

)−1

vx1

and hence to satisfy the tolerance on vx1 , we let

y0 → y0 − δy0

This process of adding small corrections, hence the name differential correction, converges

to |vx1 | < d within a few iterations, typically 10-20 for the tolerance, d ≈ 10−10. The above

procedure yields an accurate initial condition for a periodic orbit from the starting guess.

If our initial guess came from a linear approximation near the equilibrium point (C.2–8),

it has been observed numerically that we can only use this procedure for small amplitude

around the critical point, Ci, and this corresponds to energy much lower than the critical

energy. But for computation of bottlenecks around these critical points, we want an orbit

of arbitrarily large amplitude (which is in one-to-one correspondence with the energy e), we

resort to numerical continuation to generate the family of periodic orbits which reaches

the appropriate energy, e.
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To this end, we proceed as follows. Suppose we find two small nearby periodic orbit initial

conditions, x̄
(1)
0 and x̄

(2)
0 , correct to within the tolerance d, using the differential correction

procedure described above. We can generate a family of periodic orbits with successively

increasing amplitudes around Ci in the following way. Let

∆ =x̄
(2)
0 − x̄(1)

0

=[∆x0,∆y0, 0, 0]T

A linear extrapolation to an initial guess of slightly larger amplitude, x̄
(3)
0 is given by

x̄
(3)
0,g =x̄

(2)
0 + ∆

=
[
(x

(2)
0 + ∆x0), (y

(2)
0 + ∆y0), 0, 0

]T
=
[
x

(3)
0 , y

(3)
0 , 0, 0

]T
Thus, keeping x

(3)
0 fixed, we can use differential correction on this initial condition to compute

an accurate solution x̄
(3)
0 from the initial guess x̄

(3)
0,g and repeat the process until we have a

family of solutions. We can keep track of the energy of each periodic orbit and when we

have two solutions, x̄
(k)
0 and x̄

(k+1)
0 , whose energies bracket the appropriate energy, e, we

can refine our continuation until we find a periodic orbit of energy e to within a specified

tolerance. Thus, the result is a periodic orbit of desired energy e and of some period T with

initial condition X0.

Step 3: Compute the tube manifolds of the periodic orbit. First, we find the

local approximation to the unstable and stable manifolds of the periodic orbit from the

eigenvectors of the monodromy matrix. Next, the local linear approximation of the unstable

(or stable) manifold in the form of a state vector is integrated in the nonlinear equations of

motion to produce the approximation of the unstable (or stable) manifolds. This procedure

is known as globalization of the manifolds and we proceed as follows:
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First, the state transition matrix Φ(t) along the periodic orbit with initial condition X0 can

be obtained numerically by integrating the variational equations along with the equations

of motion from t = 0 to t = T . This is known as the monodromy matrix M = Φ(T ) and

the eigenvalues can be computed numerically. For Hamiltonian systems (see [72] for details),

tells us that the four eigenvalues of M are of the form

λ1 > 1, λ2 =
1

λ1

, λ3 = λ4 = 1

The eigenvector associated with eigenvalue λ1 is in the unstable direction, the eigenvector

associated with eigenvalue λ2 is in the stable direction. Let es(X0) denote the normalized

(to 1) stable eigenvector, and eu(X0) denote the normalized unstable eigenvector. We can

compute the manifold by initializing along these eigenvectors as:

Xs(X0) = X0 + εes(X0)

for the stable manifold at X0 along the periodic orbit, as illustrated in Fig. 4.3.1, and as

Xu(X0) = X0 + εeu(X0)

for the unstable manifold at X0. Here the small displacement from X0 is denoted by ε and

its magnitude should be small enough to be within the validity of the linear estimate, yet

not so small that the time of flight becomes too large due to asymptotic nature of the stable

and unstable manifolds. Ref. [73] suggests typical values of ε > 0 corresponding to nondi-

mensional position displacements of magnitude around 10−6. By numerically integrating

the unstable vector forwards in time, using both ε and −ε, for the forward and backward

branches respectively, we generate trajectories shadowing the two branches, W u
+ and W u

−,

of the unstable manifold of the periodic orbit. Similarly, by integrating the stable vector

backwards in time, using both ε and −ε, for forward and backward branch respectively,
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Figure 4.3.1: Schematic of the globalization of invariant manifolds that computes an approx-
imation of the two branches of the unstable (W u

±) and stable (W s
±) manifolds of a periodic

orbit. The two branches are computed using the positive and negative directions of the
eigenvectors eu(t0) and es(t0), respectively, after an initial displacement of small magnitude
from X0 to X1. Then, the unstable (stable) manifold is computed using successive forward
(backward) iterate of the map P which marches along the half manifold.

we generate trajectories shadowing the stable manifold, W s
+,−. This numerical procedure is

shown schematically in Fig. 4.3.1. For the manifold at X(t), one can simply use the state

transition matrix to transport the eigenvectors from X0 to X(t):

Xs(X(t)) = Φ(t, 0)Xs(X0)

It is to be noted that since the state transition matrix does not preserve the norm, the

resulting vector must be normalized.

The globalized invariant manifolds associated with rank-1 saddles are known as Conley-

McGehee tubes [74] and give insight into capsize criteria or control of capsize when a gener-

alized wave moment is acting on a ship. These tubes form the skeleton of escape dynamics by

leading the states inside them to unbounded motion and the states outside to stay bounded

in the potential well.

Step 4: Obtain the intersection of Poincaré surface-of-section and the globalized

manifolds. We adopt the Poincaré surface-of-sections U1 and U2 defined as two-dimensional
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surfaces in (4.2.13) and (4.2.14), respectively. In this form, vx(y, vy; e) means vx is constrained

by the energy (4.2.7) for a trajectory that intersects the surface U1 with positive vx (or U2

with negative vx). Thus, the Poincaré section acts as a surface on which trajectories leading

to capsize can be studied, and this is shown in Fig. 4.3.2. The two surfaces differ only in the

direction of motion of the trajectories passing through them.

Poincare SOS,

Stable manifold of right saddle (rank-1)

Periodic orbit
of energy,  

U1

Bottleneck opens 
when e > Ee

e

Capsize

Non-capsize

vx > 0

Figure 4.3.2: Shows the Poincaré surface-of-section, U1 (4.2.13), as the magenta plane and
the stable manifold of right saddle is shown as the cyan surface for a given energy e. The
manifold is codimension-1 in the phase space of R4 with geometry R1×S1 that is cylindrical,
and hence the name tube manifold. The stable manifold of a saddle up to its first intersection
with U1 is the pathway that leads to imminent capsize. The trajectory that leads to escape
from the potential well and corresponds to the imminent capsize of a ship, for example the
red trajectory, lies in the interior of the tube. Similarly, a trajectory that stays inside the
potential well and corresponds to an upright ship lies outside the tube. These example
trajectories are shown in the x− y − vy space for a given energy e and also as projection in
the configuration space.

The surfaces Ui are strategically placed, allowing us to get cross-sections of the flow within the

three-dimensional energy surface M(e). Referring to the Fig. 4.3(a), where we use R = 1.6

and ∆E = 0.03, if we integrate backwards (in time) the stable manifold of the periodic orbit

around the right critical point until it intersects U1, we obtain an elliptical region that is
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Figure 4.3.3: (a) Shows the tubes that lead to imminent capsize to left and right, and the
SOS, U1 (4.2.13), is shown as the magenta plane. These are the stable manifolds of the left
and right saddles, and are cylindrical, that is R1 × S1 geometry. (b) Shows the intersection
of the stable manifolds with the SOS U1 as regions with green boundary, and the black
boundary corresponds to intersection of the energy surface (4.2.12) with the SOS U1. where
the boundary of the region leading to imminent capsize is the intersection of the stable
manifolds with the SOS.

topologically a circle, S1, shown in y vs. vy coordinates. Although the stable manifold does

not stop here, being a global object, we know the initial conditions inside this ellipse will lead

to imminent capsize through the bottleneck on the right side. Furthermore, if we pick an

initial condition on U1, but which is outside of this ellipse, and integrate forward, it will not

lead to capsize, and will instead ’bounce back’ from the neck region, since it a non-transit

orbit. It is to noted that for a smaller energy above critical, for example ∆E = 0.003, the

tube manifold has a smaller width and its intersection with Poincaré sections has a smaller

width and hence its intersection with U1 is a smaller elliptical region.
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4.3.2 Non-conservative dynamics

Motion in rough sea. Ocean waves are typically modeled as realizations of a stationary

and homogeneous Gaussian stochastic process with zero mean [66]. This stochastic process

is represented by a standard formula for the power spectral density (PSD) of the sea surface

elevation that describes the energy content of the ocean waves distributed over the frequency

domain. We adopt the Pierson-Moskowitz wave spectrum given by

S(ω) = 0.11H2
s

ω4
z

ω5
exp

(
−0.44

(ωz
ω

)4
)

(4.3.4)

where S(ω) is the wave energy spectrum that denotes the PSD for a particular sea environ-

ment, Hs is the significant wave height (which is defined as the average of the heights of

largest 1/3rd of the waves), ωz = 0.527 rad/s is the characteristic frequency, ω is the wave

frequency. The wave frequency is typically sampled over discrete frequencies over the range

ω1 = dω to ωN = 2 rad/s using a step size of dω = 0.02 rad/s and N = 100. The wave

energy spectrum for different significant wave heights is shown in Fig. 4.4(a) and justifies

the range of frequency since almost all the energy is contained within ωN = 2 rad/s.

Using this discretization of the continuous spectrum along with uniformly distributed random

phases εi on [0, 2π], we generate a train of random waves that simulate the forcing due to

the rough sea environment [66, 75]. This is typically expressed as time-dependent angular

accelerations in (4.2.1) and then rescaled using (4.2.9) to obtain random forcing. The form

of time-dependent angular accelerations considered here is also treated in Refs. [45, 43, 76]

and is given by

mφ(t) = ω2
φ sinχα0

√
2dω

g

N∑
i=1

ω2
i

√
S(ωi) sin

(
ωie
ωφ
t+ εi

)
(4.3.5)

mθ(t) = ω2
θ cosχα0

√
2dω

g

N∑
i=1

ω2
i

√
S(ωi) sin

(
ωie
ωφ
t+ εi

)
(4.3.6)
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Figure 4.3.4: (a) Shows the wave energy spectrum, called the Pierson-Moskowitz, for different
significant wave height. The peak energy is centered at th same frequency and the max energy
increases with increasing significant wave height. This is used to sample the wave forcing for
simulating a ship rolling and pitching in rough sea. (b) Shows 10 samples of forcing, fx(t)
in beam sea of significant wave height, Hs = 4.92 m and the mean of 105 ensembles as the
zero line which demonstrates the underlying stochastic process has zero mean.

where t is the non-dimensional time measured in the units of natural roll frequency (4.2.2),

ωφ and ωθ are the natural roll and pitch frequencies for a ship, χ is the heading angle of the

waves with respect to the ship, α0 is the effective wave slope being 0.73, ωe is the encounter

frequency (frequency experienced in the ship’s reference frame) given by

ωe = ω − ω2U

g
cosχ (4.3.7)

and U is the ship’s speed. The heading angle and speed of the ship is illustrated in Fig. 4.1(b)

along with different incident wave directions. We use the speed of the boat U = 2.06 m/s,

and heading angle χ = 90◦ (beam sea) in our simulations. In first order form, the equations

of motion are given by (4.2.8) and the generalized time-dependent forcing is given by (4.2.9)

and shown in Fig. 4.4(b).

In the phase space of ξ = (x, y, vx, vy), that is R4, we classified trajectories that lead to

capsize in absence of forcing in terms of the geometry of solutions near the equilibria (see

Appendix C.2 for details). We discovered the regions of the phase space that lead to capsize
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through the bottleneck around critical points C1 (right equilibrium point) or C2 (left equi-

librium point) as shown in Fig. 4.3.2. Now, we test the robustness of the tubes, a geometric

structure in conservative dynamics, in presence of a random forcing. For simplifying the

discussion, let us consider the case of imminent capsize for the critical point C1, which in

terms of tube dynamics means the first intersection of the stable manifold of C1 with the

SOS, U1 (4.2.13).

In the conservative case, trajectories leading to imminent capsize via C1 reside completely

inside the boundary of intersection of the stable manifold of C1 with SOS, U1. Thus, in terms

of capsize probability this means all the trajectories inside tube intersection have probability

= 1 and all trajectories outside the tube have probability = 0. Now, if we consider rough

seas in the form of wave forcing (4.2.9), each initial condition on the SOS U1 generates an

ensemble of realizations of the random dynamical system (4.2.8). When we consider a large

number of these realizations (say, 400), each initial condition can be assigned a probability

of capsize. This is simply the number of realizations that lead to capsize divided by the total

number of realizations. Thus, we obtain a distribution of capsize probability for all starting

conditions on the SOS, U1, and is shown in the contour plot of Fig. 4.3.5 for Hs = 4.92 m

and Hs = 9.84 m, when ∆E = 0.003. This corresponds to a low total energy above the

critical/escaping energy while the random forcing can be considered as moderate and high

in terms of significant wave heights [66]. Furthermore, when we consider a higher total

energy above the critical/escaping energy, we observe tube dynamics to be more prominent

as the boundary now covers the region with higher capsize probability. The numerical

demonstration shows that the tubes are robust to a general time-dependent forcing even

though they are geometric structures derived from the conservative form. This is observed

for both low and high total energy, as shown in Fig. 4.3.5 and Fig. 4.3.6, respectively, and

also across moderate and high significant wave heights. Thus, the tube dynamics form the

skeleton in predicting capsize probability even when random forcing is introduced. Thus, it

provides a geometric framework to study escaping dynamics in presence of a general time-
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Figure 4.3.5: (a) Shows the distribution of capsize probability as the contour plot with region
that does not lead to capsize, that is starting conditions with 0 probability of imminent
capsize, shown as grey region for Hs = 4.92 m and ∆E = 0.003. (b) Shows the same for
Hs = 9.84 m and ∆E = 0.003. In both figures, the black boundary is the intersection of
the energy ellipsoid (see Appendix C.5 for details) with the Poincaré SOS and the magenta
curve is the boundary of the region that has capsize probability greater than 0.05. In
absence of random forcing, the boundary of the region with 1 probability is given by the
tube intersection, shown as red curve. The dotted lines denote the cross-section of the
distribution at a constant vy, and shown at the top of the contour plot. The red bar of
sharp unit probability corresponds to the tube intersection at its maximum width; while the
spread out distribution correspond to the dotted lines with different vy values.

dependent forcing.
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Figure 4.3.6: (a) Shows the distribution of capsize probability as the contour plot with region
that does not lead to capsize, that is starting conditions with 0 probability of imminent
capsize, shown as grey region for Hs = 4.92 m and ∆E = 0.03. (b) Shows the same for
Hs = 9.84 m and ∆E = 0.03.

4.4 Partial control and ship capsize

We observe from the computational study that on the surface-of-section U1 there is a region,

called escaping zone, that leads a trajectory to escape from the potential well and hence

capsize. In absence of wave forcing, the escaping zone has a distinct boundary given by the

intersection of stable manifold of the critical points with U1, and in presence of rough seas,

the escaping zone is enlarged and the boundary can now be defined using a threshold for

capsize probability. Thus, avoidance of capsize can be achieved by controlling the trajectory
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from entering the escaping zone on U1, and this surface-of-section can be considered as the

space of actuated state variables. This is where the recently developed approach of partial

control ([77, 78, 79]) can be adopted to avoid capsize in the presence of disturbance and

more importantly using a smaller control.

The scenario for applying partial control is as follows: Let us consider a compact domain Ω

in the phase space where a continuous map f can be defined such that

qn+1 = f(qn) (4.4.1)

where, qn ∈ Rk are the k−coordinates, and not all the phase space variables, and n denotes

iteration of the map. In this domain, we have a closed and bounded region Q from which the

trajectories eventually escape due to repulsion from a zero-measure set called chaotic saddle

(transient chaos [80]), or exit via the stable manifolds of a periodic orbit (tube dynamics [70]).

Our objective is to stay in the region Q by avoiding escape with infinite iteration of the map

in presence of a disturbance ξn ∈ Rk which is acting along with the escaping dynamics.

Furthermore, we want to do this avoidance by applying a feedback control un ∈ Rk such

that the partially controlled trajectory stays in the region Q. Thus, we have

qn+1 = f(qn) + ξn + un (4.4.2)

and the following assumption:

• There is a bound ξ0 > 0 such that ||ξn|| 6 ξ0, and we call ξn admissible disturbances.

• There is a bound u0 > 0 such that ||un|| 6 u0, and we call un admissible controls.

• And the upper bound on control is smaller than the upper bound on disturbances

u0 < ξ0

It is to noted that the chosen feedback control un is dependent on where a trajectory lands
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in the domain after a disturbance ξn has acted. This choosing of the control is performed by

computing a set, let us say S ∈ Q, called safe set by using the safe set sculpting algorithm

proposed in [78].

The sculpting algorithm is based on the idea of a safe point defined as

max
q∈S,||ξn||6ξ0

dist(f(q) + ξn, Q) = u0 < ξ0 (4.4.3)

and shown schematically in Fig. 4.4. The algorithm begins with the region Q which has both

Ω

Q

f(q)

q

u0

S

f(
q
)
+
ξ 0

Figure 4.4.1: Schematic of a safe point q in the final safe set, S. q is mapped to f(q) and
the disturbance, ξ0 takes it to the boundary of the disk which is atmost u0 distance .

safe and unsafe points in it. We proceed by cutting out points that are unsafe according to

the above definition and obtain a new set C1 ⊂ Q. If C1 is a safe set in Q then all points

in C1 should be safe, otherwise the sculpting algorithm proceeds to the next iteration, and

cuts outs unsafe points to obtain a new set C2 ⊂ Q. Thus, we have the iterative procedure

which ends with a set Cn such that all point are safe according to Eqn. 4.4.3. We call Cn

final safe set S. This iterative algorithm is called safe-set sculpting and computes a set

of points S in the region Q which can be controlled using a control upper bound of u0 in

presence of a disturbance upper bound of ξ0 where u0 < ξ0. The trajectory obtained by

using the safe set is called admissible, and is given by (4.4.2). This can be summarized as

algorithm shown as Procedure 3 of sculpting points, which are unsafe according to (4.4.3).
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The iterative procedure converges to the safe set S ⊂ Q for a given ξ0, u0, and Q.

Procedure 3 Safe set sculpting algorithm

Input: Set initial set, C1 = Q, and i = 1, maximum iteration, imax and number of bad
points in Q, Ncut 6= 0
while i <= imax do

Fatten the set, Ci by maximum control magnitude u0 so, C ′i = Ci + umax.
Shrink the set, C ′i by disturbance ξ0 so, C ′′i = C ′i − ξmax .
Cut the unsafe subsets of the set, Ci. A subset is unsafe if there exists q ∈ Ci such

that f(q) /∈ C ′′i .
Compute number of unsafe points removed in this iteration, Ncut and set Ci+1 = Ci

and update, i = i+ 1.
end while

4.4.1 Computational approach to finding safe sets

We need a suitable definition for a map, its image and escaping zone on the domain Ω to

compute safe sets for a dynamical system. Although, the numerical procedure is stated in

terms of sets in Rn, our computational study is based on the implementation in R2. In

order to apply the sculpting operator in R2, we define a Poincaré return map, f , on the

SOS, U1 as defined by (4.2.13), for the flow given by (4.2.6). We know from the geometric

view that a SOS should be such that intersection of trajectories are near transverse, and

trajectories cross the SOS at least once before escaping from the potential well to the realm

of capsize via the right and left bottlenecks. Thus, we adopt the two surfaces U1 and U2

as defined in (4.2.13) and (4.2.14), respectively, and define the intersection with the energy

surface (4.2.7) as the domain Ω. Now, we need to define a region Q in Ω that excludes a

zone that lead to escape from the potential well; we call it the escaping zone and denote it

by Ezone. In this section, we propose two approaches based on defining the region Q and the

return map f for partial control of ship capsize.

Step 1: Construct the region Q and define the map f . We begin by selecting the

total energy e, which is above the critical energy Ee, and is the necessary, but not sufficient,
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condition for capsize. The value of energy e also defines the boundary ∂Ω, which is the

intersection of the energy surface with the SOS. Thus, the boundary ∂Ω is given by

∂Ω :=
(vy − 0)2

(R
√
e)2

+
(y − 0)2

(
√
e)2

=1 (4.4.4)

The closed and bounded set Q is the region Ω−Ezone, and denotes the set where we want to

keep the admissible trajectory (4.4.2). The set Q is shown in Fig. 4.2(c) as the grey region

inside the black boundary ∂Ω with the escaping zone Ezone = f−1(ΓO,R) as the white region

inside ∂Ω. It is to be noted that the necessary and sufficient condition for a trajectory, that

leads to imminent capsize, is its crossing of SOS inside the first intersection of the stable

manifold of the right/left saddle points. However, for an open dynamical system, like the

one at hand, the map of initial points inside the escaping zone will never return to the SOS.

Hence, we define the escaping zone as the pre-image of the first intersection of the stable

manifold with the SOS.

Thus, we construct the map f , which is required in the cutting step of the sculpting algorithm,

as the return map in the following two ways:

ΣU1U1 : U1 → U1 (4.4.5)

which is to say trajectories return to the plane y − vy with vx > 0, and

ΣU1U2 : U1 → U2 (4.4.6)

which denotes the return map from the SOS with vx > 0 to SOS with vx < 0. Next, we

discretize the region Q using a grid of points which act as the initial condition for the return

map and obtain the image of these points.

Step 2: Obtain a discrete representation of continuous wave forcing. One of the

interesting questions that arises in application of partial control is how to connect the upper
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(a) (b) (c) (d)

Figure 4.4.2: Shows the region Q and its image under the map f (4.4.5) in (a) and (b),
respectively. The same is shown for the map f (4.4.6) in (c) and (d), respectively. These two
approaches of defining the map f form the basis of obtaining safe sets in the partial control
framework.

bound of disturbance with the environmental noise acting on the system. For a ship in

rough sea, the random forcing due to waves can be treated as noise on the conservative

motion. As we have shown in Sect. 4.3.2, the effect of rough seas can be very drastic, yet the

geometric structure of the conservative system can still act as the skeleton for the exit basin.

Furthermore, it has been discussed [81] that with increase in the intensity of noise, given

by significant wave height Hs, the exit time increases until a critical value and then decays

rapidly which is related to the preservation of KAM tori near low noise intensity. Thus, the

noise affects the trajectory continuously but the accumulated effect on the return map can

be captured by considering the noisy Poincaré map [81]. We call the effect of the continuous

random forcing on the dynamics of the Poincaré map as the discrete disturbance.

To relate the significant wave height Hs with the upper bound on the disturbance ξ0, we

adopt an ensemble average approach. We begin with a grid of sample initial points in our

domain which is meant to capture different return times for the map f . Some of these initial

points will land inside the stable manifold’s intersection, and will never return to the surface,

and hence are discarded. Next, we assign an ensemble of 100 (say) trajectories to each of

the sample points and obtain the distribution of image points fnoise(p) on the surface. Since
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the mean of this distribution 〈fnoise(p)〉 has been found to coincide with the image f(p) in

absence of random forcing, we consider the difference as an accumulated effect of the noise

and thus, a measure of the discrete disturbance ξ0.

Step 3: Safe set computations With the region Q and map f defined, and the obtained

upper bound on the disturbance, we can use the safe set sculpting algorithm described as

Procedure 3 to obtain safe sets. The sculpting algorithm works in an iterative process

(a) (b)

Figure 4.4.3: Using the safe set sculpting algorithm, we compute sets in the region Q (shown
in (c)) and the map f (4.4.6) for the disturbance upper bound of ξ0 = 0.1 and control upper
bounds of u0 = 0.061 (shown in (a)) and u0 = 0.1 (shown in (b)). The red and green disks
are the size of disturbance and control, respectively, which are used in the safe set sculpting
algorithm and shown here for scale. When obtaining a partially controlled trajectory, we
sample values ξn from [−ξ0, ξ0] and obtain un by computing distance from the safe set. Safe
set in Fig.(a) corresponds to the minimum control (in the sense of upper bound) that is
needed for the given disturbance, and below u0 = 0.061 the safe set does not exist. This is
a critical value for partial control, however, this approach guarantees safety with u0 < ξ0 ad
infinitum.
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4.5 Discussion and Conclusions

Ship motion exemplifies a field where the application of phase space transport to higher

dimensions is sorely needed, but where a conceptual framework for dealing with multi-degree

of freedom problems has been lacking [76, 53]. Ship motion can be analytically modeled

generally as a 6 degree of freedom system. Despite this, many models of ship dynamics

focus on single-degree-of-freedom, reduced order models. But such models can be vulnerable

to neglecting crucial dynamics. The ease of visualization of low dimensional dynamics has

been part of their appeal. But couplings of multiple state variables can significantly alter

predictions of safety versus capsize, as emphasized by Refs. [59, 60, 82], and thus 2 or more

degrees of freedom should be included.

In this study, we attempted to introduce conceptual aids for multi-degree degree of freedom

systems which may help in the interpretation of dynamics which lead to capsize.

Our approach was as follows.

• We considered first the dynamics of the underlying conservative system, which is itself

non-trivial. These dynamics determine the phase space ‘skeleton’ upon which non-

conservative forces, including random waves, are additional effects.

• In the simplest case of only two degrees of freedom, the phase space is of dimension four

and the boundary between non-capsize and capsize states is given by a well-defined

transition state (to use language borrowed from chemistry, but which has greater ap-

plicability [83, 11, 84]).

• The set of all states leading to capsize can be understood as residing within a hyper-

cylindrical manifold or tube, as in Fig. 4.3.2. This tube is the set of all states which

will soon reach the transition state [64, 85]. From a probabilistic point of view, states

in the tube will reach capsize with probability 1, while those outside have probability

0.

103



• With the addition of random wave forcing, the ensemble of trajectories leading to

capsize is seen to be a smoothed probability distribution which shadows the underlying

conservative system, as in as in Figs. 4.3.5 and 4.3.6. The peak probabilities match

those from the conservative case. In the ensemble limit, small amplitude random waves

are effectively noise, albeit bounded noise.

• However, this behavior also persists even for large amplitude random forcing (Fig. 4.5(b)

and 4.6(b)), and hence provides a more general framework to study escaping dynamics.

An appealing aspect of this approach is that, while results for N = 2 degrees of freedom

were shown for ease of discussion, the approach is completely scalable to higher degrees

of freedom, as has been demonstrated in other contexts [84]. For example, when N > 2

periodic orbits are S2N−3 and will need computation of their associated invariant manifolds.

This is key, as it makes the approach attractive for the systematic analysis of multi-degree

of freedom ship motions [53], up to and including all the degrees of freedom. Moreover, the

tubes are also robust in the sense of predicting high probability regions of escape even in the

presence of random forcing.

The foregoing study lays the foundation for a new approach to the avoidance of capsize.

For instance, avoidance of capsize can be achieved by controlling a trajectory just enough to

avoid entering the escaping zone on the surface-of-section. Future work will on control will

be forthcoming.
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Appendix C

C.1 The Linearized Hamiltonian system

The geometry of motion near the rank-1 saddle is explained by writing the Hamiltonian in its

normal form which is obtained using a linear transformation and in this section, we present

the details of this method. We note that the Hamiltonian for the rescaled system can be

obtained via the usual Legendre transformation of the Lagrangian (4.2.4) and is given by

H(x, y, px, py) =
1

2
p2
x +

1

2

(
R2

2

)
p2
y +

1

2
x2 + y2 − x2y (C.1–1)

We know the canonical form of the equations of motion in terms of the Hamiltonian for n

degrees of freedom is given by

q̇

ṗ

 =J∇H (C.1–2)

where, J =

 0n In

−In 0n

 (C.1–3)

is the symplectic 2n × 2n matrix, {q,p} = {q1, q2, . . . qn; p1, p2, . . . pn} ∈ R2n are the gener-

alized coordinates, 0n is the zero matrix of size n × n, and In is the identity matrix of size
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n× n . The equations of motion associated the Hamiltonian (C.1–1) are given by

x̊ =
∂H

∂px
= px

ẙ =
∂H

∂py
=
R2

2
py

p̊x = −∂H
∂x

= −x+ 2xy

p̊y = −∂H
∂y

= −2y + x2

(C.1–4)

Eigenvalues and eigenvectors. The saddle equilibrium points are at (±1, 1/2, 0, 0) and

the center equilibrium point is at (0, 0, 0, 0). The linearization of the equations of motion is

given by

J(x,y,px,py) =



0 0 1 0

0 0 0 R2/2

−1 + 2y 2x 0 0

2x −2 0 0


(C.1–5)

which are evaluated at the equilibrium points (1, 1/2, 0, 0) becomes

J(x,y,px,py) =



0 0 1 0

0 0 0 R2/2

0 2 0 0

2 −2 0 0


= M (C.1–6)
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The characteristic polynomial is given by

p(β) = det(M − βI) =



−β 0 1 0

0 −β 0 R2/2

0 2 −β 0

2 −2 0 −β



=− β


−β 0 R2/2

2 −β 0

−2 0 −β

+ 1


0 −β R2/2

0 2 0

2 −2 −β


=− β(−β(β2 − 0) +R2/2(0− 2β)) + 1(β(0− 0) +R2/2(0− 4))

=− β(−β3 − 2β(R2/3)) + (−2R2)

p(β) =β4 +R2β2 − 2R2

Let α = β2, then the roots of p(α) = 0 are as follows

α1 =
−R2 +R

√
8 +R2

2
(C.1–7)

α2 =
−R2 −R

√
8 +R2

2
(C.1–8)

Since R > 0 always, being the ratio of frequencies, and the
√

8 +R2 > R, we know α1 > 0

and α2 < 0. Thus, let us define λ =
√
α1 and ν =

√−α2.

Now, we want to find the eigenvectors of matrix (C.1–6) and use them to construct a sym-

plectic linear change of variables which will cast (C.1–1) into its real normal form.

Let us assume the eigenvector to be v = (k1, k2, k3, k4) and thus, Mβ = βv gives the following
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equations:

k3 =βk1

R2

2
k4 =βk2

2k2 =βk3

2k1 − 2k2 =βk4

Let k1 = 1, then the eigenvector has a form (1, k2, β,
2βk2
R2 ). Thus using the third and fourth

equations for the eigenvalue β = λ and β = −λ, we get

2k2 =λ2

1− k2 =
λ2

R2
k2

2k′2 =(−λ)2

1− k′2 =
(−λ)2

R2
k′2

which implies k2 = k′2 and let k2 = σ, using the last equation we get

σ =
R2

R2 + λ2
(C.1–9)

Thus, using the third and fourth equations for the eigenvalue β = iν and β = −iν, we get

2k2 =− ν2

1− k2 =− ν2

R2
k2

2k′2 =(−iν)2

1− k′2 =
(−iν)2

R2
k′2
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which again implies k2 = k′2 and let k2 = τ , using the last equation we get

τ =
2ν

R2 − ν2

Thus, the eigenvectors associated with eigenvalues ±λ becomes

uλ =

[
1,

R2

R2 + λ2
, λ,

2λ

R2 + λ2

]
u−λ =

[
1,

R2

R2 + λ2
,−λ,− 2λ

R2 + λ2

]

and for the eigenvalue iν, we separate the real and imaginary parts as uν + ivν to obtain the

two eigenvectors

uν =

[
1,

R2

R2 − ν2
, 0, 0

]
vν =

[
0, 0, ν,

2ν

R2 − ν2

]

Symplectic change of variables. Next, we consider the transformation given by the

matrix C which is formed using the eigenvectors as the basis and is given by

C = [uλ, uν ,−u−λ, vν ] (C.1–10)

To check whether this transformation is symplectic, that is the transformed Hamiltonian is

in the normal form, we check the condition CTJC = J to obtain

CTJC =

 0n D

−D 0n

 where, D =

dλ 0

0 dν

 (C.1–11)

where 0n is the zero matrix of size n × n. The resulting structure can be obtained if we

note that the factor 1 + 2R2

(R2−ν2)(R2+λ2)
= 0 when the values of λ =

√
α1 and ν =

√−α2
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is substituted from (C.1–7) and (C.1–8). Thus, the transformation matrix C is symplectic

when scaled using the factors s1 =
√

2dλ and s2 =
√
dν . These are given by

dλ =λ+
R2

R2 + λ2

2λ

R2 + λ2
(C.1–12)

dλ =ν +
R2

R2 − ν2

2ν

R2 − ν2
(C.1–13)

and it is easy to check dλ > 0, dν > 0. This implies that the final change is given by the

symplectic transformation matrix C



1/s1 1/s2 −1/s1 0

R2

s1(R2+λ2)
R2

s2(R2−ν2)
− R2

s1(R2+λ2)
0

λ/s1 0 λ/s1 ν/s2

2λ
s1(R2+λ2)

0 2λ
s1(R2+λ2)

2ν
s2(R2−ν2)


(C.1–14)

which transforms the coordinates (x, y, px, py) into (q1, q2, p1, p2) and that casts Hamiltonian

into its normal form given by

H(q1, q2, p1, p2) =λq1p1 +
ν

2
(q2

2 + p2
2) (C.1–15)

Thus, the linearized equations of motion near the saddle (1, 1/2, 0, 0) are

q̊1 = λq1 p̊1 = −λp1

q̊2 = νp2 p̊2 = −νq2

(C.1–16)

and the solutions of the equations (C.1–16) is written as

q1(t) = q0
1e
λt p1(t) = p0

1e
−λt

q2(t) + ip2(t) = (q0
2 + ip0

2)e−iνt
(C.1–17)

where the constants q0
1, p

0
1, q

0
2 + ip0

2 are the initial conditions. These linearized equations
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admit integrals in addition to the Hamiltonian function; namely, the functions q1p1, q2
2 + p2

2

are constant along solutions.

C.2 Geometry of solutions near equilibria

The geometric view of the solutions near the equilibria, C1 and C2, is studied using the

eigenbases for linearized equations of motion around these points. Let us consider the right

equilibrium point, C2, and the results for left equilibrium point, C1, follows from symmetry,

sx.

Eigenvalues and eigenvectors. We compute the Jacobian of the vector field about this

point and the linear system is now given by



x̊

ẙ

v̊x

v̊y


= Df |(xe,ye,0,0)



x

y

vx

vy


=



0 0 1 0

0 0 0 1

0 2 0 0

R2 −R2 0 0





x

y

vx

vy


(C.2–1)

for which the eigenvalues are obtained by solving the characteristic polynomial

β4 +R2β2 − 2R2 = 0 (C.2–2)

Due to the simpler form of the above 4th order polynomial, the roots can be written as

β2 =
−R2 ±

√
R4 − 4(−2R2)

2

β = ±

√√√√R2

2

(
−1±

√
1 +

8

R2

)
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Thus, the eigenvalues are of the form ±λ and ±iν, where

λ =

√√√√R2

2

(√
1 +

8

R2
− 1

)
ν =

√√√√R2

2

(√
1 +

8

R2
+ 1

)
(C.2–3)

These eigenvalues classify the equilibrium point C2 (and C1 due to symmetry sx) as rank-1

saddle which, in general, means they possess one saddle direction and are center in all other

directions. Thus, the eigenvectors corresponding to ±λ are of saddle type and the eigenvalues

corresponding to ±iν are of center type that is periodic motion.

Let v = (k1, k2, k3, k4) denote the eigenvector corresponding to the eigenvalue λ and the

Jacobian matrix at C2 is denoted by A = Df |(xe,ye,0,0), then Av = αv gives

k3 = λk1 k4 = λk2

2k2 = λk3 R2(k1 − k2) = λk4

Let k1 = 1, then using the first set of equations, the eigenvector is of the form (1, k2, λ, λk2)

and we can solve λ, k2 for different eigenvalues. For the real eigenvalues ±λ, we obtain:

u1 =

(
1,

R2

R2 + λ2
, λ,

λR2

R2 + λ2

)
(C.2–4)

u2 =

(
1,

R2

R2 + λ2
,−λ,− λR2

R2 + λ2

)
(C.2–5)

For the complex conjugate eigenvalues ±iν, we obtain:

w1 =

(
1,

R2

R2 − ν2
, iν,

iνR2

R2 − ν2

)
(C.2–6)

w2 =

(
1,

R2

R2 − ν2
,−iν,− iνR2

R2 − ν2

)
(C.2–7)

where, λ and ν are positive constants given by (C.2–3). Thus, the general solution of the
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linear system C.2–1 is given by

x(t) = {x(t), y(t), vx(t), vy(t)} = α1e
λtu1 + α2e

−λtu2 + 2Re(βeiνtw1) (C.2–8)

where, α1, α2 are real and β = β1 + iβ2 is complex. However, we can use the eigenvectors to

define a coordinate system that makes this picture more clearer.

Eigenvectors as axes for new coordinate system. To better understand the orbit

structure on the phase space, we make a linear change of coordinates with the eigenvectors:

u1, u2, w1, w2, as the axes of the new system. Using the corresponding new coordinates

(ξ, η, ζ1, ζ2), the equations of motion near the equilibrium points assume the simple form:

ξ̇ =λξ

η̇ =− λη

ζ̇1 =νζ2

ζ̇2 =− νζ1

(C.2–9)

and the energy integral for the linearized system becomes

El = λξη +
ν

2

(
ζ2

1 + ζ2
2

)
(C.2–10)

Thus, the solutions of the equations (C.2–9) can be written as

ξ(t) =ξ0 expλt

η(t) =η0 exp−λt

ζ(t) =ζ1(t) + iζ2(t) = ζ0 exp−iνt

(C.2–11)

where, the constants ξ0, η0, and ζ0 = ζ0
1 + iζ0

2 are the initial conditions. These linearized

equations admit integrals in addition to the energy function (C.2–10); namely the functions

118



ξη and |ζ|2 = ζ2
1 + ζ2

2 are both constant along solutions.

Local integrals in equilibrium region. The geometric view of solution near the equi-

librium points is based on expressing the Hamiltonian in normal form which is based on

Moser’s Theorem. We present the discussion from [70] for the sake of completeness. Sup-

pose we have a time-dependent, analytic Hamiltonian system of differential equations with

two degrees of freedom. Suppose these equations have a non-degenerate equilibrium point

with one pair of real and one pair of imaginary eigenvalues, ±λ and ±iν. We can assume,

without loss of generality, that the phase space coordinates (q1, q2, p1, p2) are chosen so that

the Hamiltonian function assumes the following form:

H(q, p) = λq1p1 +
ν

2
(q2

2 + p2
2) +O3(q, p),

where q = (q1, q2), p = (p1, p2) and the symbol On(·, ·) denotes terms of order n or higher

in the variables. In particular, the equilibrium point has coordinates p = q = 0 and the

differential equations are obtained from H as

q̇1 =Hp1 = λq1 +O2(q, p)

q̇2 =Hp2 = νp2 +O2(q, p)

ṗ1 =−Hq1 = −λp1 +O2(q, p)

ṗ2 =−Hq2 = νq2 +O2(q, p)

(C.2–12)

The linearized equations are similarly obtained from a Hamiltonian function which consists

of the quadratic terms of H, or equivalently, by dropping the terms of order two or higher

in th above equations. Solution of these linearized equations are conveniently written as

q1(t) = q0
1e
λt p1(t) = p0

1e
−λt

q2(t) + ip2(t) = (q0
2 + ip0

2)e−iνt
(C.2–13)
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where the constants q0
1, p0

1, and q0
2 + ip0

2 are the initial conditions. These linearized equations

admit integrals in addition to the Hamiltonian function; namely, the functions q1p1 and

q2
2 + p2

2 are constant along solutions. A generalization of Lyapunov’s theorem in [71] states

that the full non-linear equations admit “local” integrals analogous to these via power series

in q and p that start with quadratic terms q1p1 and q2
2 + p2

2. It is also shown in [71] that the

power series converges in some neighborhood of q1 = p1 = 0 and such that the corresponding

functions are constants along pieces of solutions lying in the domain of convergence.

Moser’s theorem. Let q = p = 0 correspond to a critical point as described above, then

there exists a (real) analytic, transformation

q1 =ξ +O2(ξ, η, ζ, ζ̄),

p1 =η +O2(ξ, η, ζ, ζ̄),

q2 + ip2 =ζ +O2(ξ, η, ζ, ζ̄)

(C.2–14)

as well as power series α and β in the variables χ = ξη and |ζ|2 of the form

α =λ+O1(χ, |ζ|2)

β =− iν +O1(χ, |ζ|2)

(C.2–15)

such that solutions of the transformed equations are given by

ξ(t) =ξ0etα η(t) = η0e−tα

ζ(t) =ζ0etβ ζ̄(t) = ζ̄0e−tβ
(C.2–16)

where, ξ0, η0, and ζ0 are determined from the initial conditions and ζ̄ is the complex conjugate

of ζ. Furthermore, the coefficients of α and β are real and complex, respectively, from which

it follows that the functions ξη = q1p1 + O3(q, p) and |ζ|2 = q2
2 + p2

2 + O3(q, p) are local

integrals, as are α and β. Thus, the transformation of the Hamiltonian function has the
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form

Γ(ξ, η, ζ, ζ̄) = H(q, p) = λξη +
1

2
|ζ|2 +O2(χ, |ζ|2) (C.2–17)

and in particular depends only on the variables χ = ξη and |ζ|2.

Flow in the equilibrium region. Consider a neighborhood of Ci, for i = 1 or i = 2 and

fixed energy e, in the energy surface, then we refer to this neighborhood as the equilibrium

region and denote it by R on the energy surface. The position space configuration will be

denoted by R.

For positive el and c, the region R, which is determined by

El = el and, |η − ξ| 6 c (C.2–18)

which is homeomorphic to the product of a two-sphere and an interval; that is, for fixed

value of η − ξ on the interval I = [−c, c], the equation El = el defines the two-sphere

λ

4
(η + ξ)2 +

ν

2

(
ζ2

1 + ζ2
2

)
= el +

λ

4
(η − ξ)2 (C.2–19)

The bounding sphere of R for which η − ξ = −c will be called n1, and where η − ζ = c, will

be called n2. We shall call the set of points on each bounding sphere where η + ξ = 0 as

the equator, and the sets where η + ξ > 0 or η + ξ < 0 will be called the north and south

hemispheres, respectively.

To analyze the flow in R one simply considers the projections on the η − ξ plane and ζ

planes, respectively. In the first case, we see the standard picture of an unstable equilibrium

point, and in the second, of a center. Fig. C.2.1 illustrates the flow in the η − ξ plane with

the coordinate axes tilted by 45◦. In Fig. C.2.1(b), R itself projects to a set bounded on two

sides by the hyperbola η − ξ = e/λ, denoted by thick solid hyperbolic segments on the top
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and bottom. R is bounded on two other two sides by the line segments η − ξ = ±c, denote

by dotted vertical lines on the left and right, which correspond to the bounding spheres , n1

and n2, respectively. Since ηξ is an integral of the equations in R, the projections of orbits

η
−

ξ
=

0

η + ξ = 0

|ζ| 2
=

ρ ∗|ζ|
2 =

ρ
∗

η
−

ξ
=

+
c

η
−

ξ
=

−
c

ηξ

|ζ|
2 = 0

|ζ|
2 = 0

n2n1

(a)

ηξ

T22T11

T12

T21

n1
n2

(b)

Figure C.2.1: The projection onto the η − ξ plane of orbits near the equilibrium point; the
η − ξ axis is rotated by 45◦. (a) Shows the equilibrium region, R, is bounded by the thick
hyperbolic segments at top and bottom and the dotted vertical segments at left and right.
At the origin is the periodic orbit in R. The thick lines with arrows pointing toward or away
from the origin are trajectories asymptotically winding onto the periodic orbit. (b) Shows
four additional trajectories. The label Tij denotes the path of a particle which entered R
through ni and exited through nj. Two transit orbits, T12 and T21, and two non-transit
orbits, T11 and T22, are shown.

in the η−ξ plane move on the branches of the corresponding hyperbolas ηξ = e/λ, except in

the case ηξ = 0. If ηξ > 0, the branches connect the bounding line segments η− ξ = ±c and

if ηξ < 0, they have both end points on the same segment. A check of equation (C.2–16)

shows that the orbits move as indicated by the arrows in Fig. C.2.1.

To interpret Fig. C.2.1 as a flow in R, notice that each point in the projection corresponds

to a circle in R given by the “radius” variable ρ = |ζ|2 = constant. We recall from (C.2–10)

that |ζ|2 = 2
ν
(e − ληξ) and for points on the bounding hyperbolic segments η − ξ = e/λ,

the constant is zero so that the circle collapses to a point. Thus, the segments of the lines

η − ξ = ±c in the η − ξ projection correspond to the two-spheres bounding R. Since each
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corresponds to a circle crossed with an interval where the two end circles are pinched to a

point.

Thus, we can distinguish between nine classes of orbits grouped into four categories:

1. The point at the origin in Fig. C.2.1(a), ξ = η = 0, corresponds to a periodic orbit

in R

2. The four half-open segments on the axes, ηξ = 0 (or equivalently |ζ|2 = ρ∗ where ρ∗ =

2e/ν), correspond to four cylinders of orbits asymptotic to this periodic solution either

as time increases (ξ = 0) or as time decreases (η = 0). These are called asymptotic

orbits. These are drawn as the solid green lines with arrows pointing toward or away

from the origin in Fig. C.2.1.

3. The hyperbolic segments determined by ηξ =constant > 0 (or equivalently |ζ|2 < ρ)

correspond to two cylinders which cross R from one bounding sphere to the other,

meeting both in the same hemisphere; the north one if they go from η − ξ = +c to

η− ξ = −c, the south one in the other case. Since these orbits transit from one region

to another, we call them transit orbits. The two trajectories labeled T12 and T21 in

Fig. C.2.1(b).

4. Finally, the hyperbolic segments determined by ηξ =constant < 0 (|ζ|2 > ρ∗) cor-

respond to two cylinders of orbits in R each of which runs from one hemisphere to

the other hemisphere on the same bounding sphere. Thus if η > 0, the sphere is n1

(η − ξ = −c) and orbits run from the south (η + ξ < 0) to the north (η + ξ > 0)

hemisphere while the converse holds if η < 0, where the sphere is n2. Since these orbits

return to the same region, we call them non-transit orbits. These two trajectories

are labeled T11 and T22 in Fig. C.2.1(b).
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C.3 Derivation of coupling constant

For applying the methods developed for 1 DOF and 2 DOF model of ship dynamics, we need

to estimate the ratio of second moment of inertia and the coupling constant for the ship,

Edith Terkol. The ratio of pitch and roll natural frequencies is given by R, so we have

ωθ = Rωφ (C.3–1)

Furthermore, we know the angle of vanishing stability, φe and the corresponding pitch angle,

θe is given by

φe =
ωφωθ

K1

√
2

√
Iyy
Ixx

, θe =
ω2
φ

2K1

Thus, we have

θe =
K1

ω2
θ

Ixx
Iyy

φ2
e

Let us consider the equation of motion for roll degree of freedom and its nonlinear term

involving K1 in (4.2.1) for the angle of vanishing stability. So we have

2K1θeφe =2K1φe

(
K1

ω2
θ

Ixx
Iyy

φ2
e

)
=

2K2
1

ω2
θ

Ixx
Iyy

φ3
e

=
2K2

1

R2ω2
φ

Ixx
Iyy

φ3
e

=Aφ3
e

Thus, the restoring moment (in terms of potential energy V (φ) this is −dV
dφ

) for roll dynamics

is given by

Mφ = −ω2
φφ+ Aφ3 = φ

(
−ω2

φ + Aφ2
)

(C.3–2)
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which vanishes at instant of capsize, φ = φe. Thus, we have

A = ω2
φ/φ

2
e (C.3–3)

and for the ship Edith Terkol, A = 0.5239 s−2. Thus, computing the constant K1 requires

estimating the ratio of second moment of inertia assuming a solid rectangular parallelepiped.

Using L = 58.6 m, B = 9.65 m, and D = 4.15 m (as shown in Fig. C.3.1) from Ref. [86] and

the formula for Ixx and Iyy, we get

Ixx

Iyy

L

B

D

Figure C.3.1: Schematic of a solid rectangular parallelepiped that represents a ship

Ixx =
m

12

(
D2 +B2

)
and,

Iyy =
m

12

(
L2 +D2

)
which gives

Iyy
Ixx

=
L2 +D2

B2 +D2
(C.3–4)

which on substitution of appropriate values gives 31.28. Thus, the coupling constant is given

by

K1 =

√
Aω2

φ

2

Iyy
Ixx

R (C.3–5)
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C.4 Derivation of differential correction term

Let trajectories of the differential equation ẋ = f(x), e.g. (4.2.6), with initial condition

x(t0) = x0 be denoted by the flow map φ(t, t0;x0), or φ(t;x0). In what follows, we note

x ∈ Rn and f : Rn → Rn unless the specific case of n = 4 for 2 degree of freedom systems

is mentioned. For the guess initial condition, x̄0,g, a first guess to an initial condition along

a periodic orbit, a trajectory that starts from the perturbed initial vector x̄0 + δx̄0 evolved

until t+ δt with the displacement

δx̄(t+ δt) = φ(t+ δt, t0; x̄0 + δx̄0)− φ(t, t0; x̄0)

with respect to the first guess reference solution x̄(t). We compute the displacement at time

t1 + δt1 using

δx̄(t1 + δt1) = φ(t1 + δt1, t0; x̄0 + δx̄0)− φ(t1, t0; x̄0) (C.4–1)

and expanding the right hand side using Taylor series, we get

δx̄(t1 + δt1) =
∂φ(t1, t0; x̄0)

∂x0

δx̄0 +
∂φ(t1, t0; x̄0)

∂t1
δt1 + h.o.t, (C.4–2)

=
∂φ(t1, t0; x̄0)

∂x0

δx̄0 + ˙̄x1δt1 + h.o.t, (C.4–3)

where the first part of the second term ∂φ(t1,t0;x̄0)
∂t1

comes from dφ(t,t0;x̄0)
dt

= f(φ(t, t0; x̄0)),

which is the vector field after flowing for t = t1 along the reference trajectory. The matrix,

∂φ(t1,t0;x̄0)
∂t1

, which satisfies the above relation to first order δt1 = 0 is the state transition

matrix (STM) denoted by Φ(t1, t0). The first term involving the derivative of a trajectory

with respect to the initial condition at t = t1 is given by

δx̄(t1) = Φ(t1, t0)δx̄0
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can be obtained numerically as a solution to the variational equations

δ ˙̄x(t) = Df(x̄(t))δx̄ (C.4–4)

where Df(x̄(t)) is the Jacobian of the vector field evaluated at x̄(t). Suppose we want to

reach a desired endpoint, xd, but

x̄(t1) = φ(t1, t0; x̄0) = x̄1 = xd − δx̄1

is slightly off (|δx̄1| > d) for a specified tolerance d << 1 and we need correction. Since,

φ(t1, t0; x̄0 + δx̄0) =φ(t1, t0; x̄0) +
∂φ(t1, t0; x̄0)

∂x0

δx̄0 + h.o.t.,

=φ(t1, t0; x̄0) + Φ(t1, t0)δx̄0 + h.o.t.,

=x̄1 + δx̄1 + h.o.t.,

=xd + h.o.t.,

which implies that changing x̄0 by

δx̄0 = Φ(t1, t0)−1δx̄1

will perform the correction to first order. By iteration, the process converges with the criteria:

‖φ(t1, t0; x̄0 + ∆x̄0)− xd‖ < d

where ∆x̄0 is the accumulation of corrections δx̄0 which yields xd within the desired tolerance

d. Thus, the procedure of differential correction proceeds as follows:

We choose a guess initial condition, x̄0,g at t0 = 0, for example this is of the form [x0, y0, 0, 0]T

for the roll-pitch coupled model (4.3.2).
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Using a high tolerance (typically 10−14) for a standard integration package, we integrate

this initial condition until the half-period event is satisfied. This gives us x̄(t1), so we can

compute Φ(t1, 0) and for a periodic orbit, the desired final state has the form

x̄(t1) = [x1, y1, 0, 0]T

where, t1 = T/2, a half-period of the periodic orbit. As a result of numerical integration, the

obtained value of vx1 may not be 0 and for our purpose of convergence, we want |vx1| < d

(for example, d = 10−10). Thus, the state transition matrix after one half-cycle, Φ(t1, 0), can

be used to correct the initial condition to obtain a periodic orbit as

δx̄1 ≈ Φ(t1, 0)δx̄0 + ˙̄x1δt1

Suppose |vx1 | > d and we keep x0 constant, then expanding the above linear system, the

correction to vy0 can be calculated from

vx1 =δvx1 = Φ32δy0 + v̇x1δt1 + h.o.t.

0 =δvy1 = Φ42δy0 + v̇y1δt1 + h.o.t

where, Φi,j is an element of the matrix Φ(t1, 0) and v̇x1 comes from the equations of motion

evaluated at the half-period event, t = t1. Here, we set vx1 = δvx1 to enforce vx1 = 0.

Furthermore, eliminating δt1, we get

δt1 = −Φ42δy0

v̇y1
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and substituting in the equation for correction to δvx1 , we get

vx1 =Φ32δy0 + v̇x1

(
−Φ42

δy0

v̇y1

)
vx1 =δy0

(
Φ32 − Φ42

v̇x1
v̇y1

)

and hence the y-coordinate should be corrected by

δy0 =

(
Φ32 − Φ42

v̇x1
v̇y1

)−1

vx1 (C.4–5)

Thus, the differential correction in one of the coordinates can be used to correct the guess for

initial condition of a periodic orbit. This can be adopted as a general numerical procedure

for unstable periodic orbits or unstable solutions of differential equations with known end

points.

C.5 Boundary of total energy on surface-of-section

The energy surface given by (4.2.12) can be visualized as an ellipsoid in the (y, vy, vx)-space.

When x = 0, that is the intersection with the surface-of-section, U1 (4.2.13) or (4.2.14), the

total energy (4.2.12) becomes

E(x, y, vx, vy) = e =
y2

1
+
v2
y

R2
+
v2
x

2
(C.5–1)

y2

(
√
e)2

+
v2
y

(R
√
e)2

+
v2
x

(
√

2e)2
=1 (C.5–2)

Now, the boundary of energetically accessible region on the surface-of-section, U1 or U2, is

given by vx = 0. Thus the boundary of constant total energy is the ellipse

y2

(
√
e)2

+
v2
y

(R
√
e)2

=1 (C.5–3)
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with 2R
√
e as major axis and 2

√
e as minor axis for R > 1.
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Chapter 5

Conclusions

“The purpose of computation is insight, not numbers.” – Richard Hamming

In this dissertation, I explored methods in nonlinear dynamics and chaos theory that are

based on geometry of solutions which has implications in diverse areas of mechanics, physical

sciences, and engineering. The mathematical ideas are discussed in the context of ordinary

differential equations and flow maps that can be readily obtained for a given dynamical

system with geometric constructions [16, 87] like surface-of-section and invariant manifolds.

These techniques serve as means of coarse grain sampling of the phase space that is significant

from the perspective of global transport and control.

One aspect of studying phase space transport is to characterize dynamically distinct trajec-

tories of the system. For incompressible, inviscid fluid flow, this is applicable for studying

transport of phase space volume which can be used to define intrinsic and extrinsic prop-

erties of the system. The time evolution of these properties is of interest for optimizing or

designing mechanical devices. For control systems, the understanding of global transport

inspires control laws to be aware of the partial barriers in phase space and hence can be

used along with energy or time constraints for solving optimal control problems. The theory,

numerical methods and computational results presented in Chapter 2 are meant to serve this
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objective.

The other aspect of phase space transport is the prediction and control of escape or transi-

tion in potential well which is ubiquitous in nonlinear dynamics with multiple equilibria. I

presented the phenomena in the context of ship dynamics and capsize for 1 DOF and 2 DOF

models in Chapter 3 and Chapter 4, respectively. By applying this concept to problems

in mechanics, my objective is to appeal and draw attention of scientists and engineers in

physical sciences and applied mechanics. Furthermore, my objective is to show the relevant

geometric construction for predicting escape or transition phenomena. Next, using these

phase space structures, I advanced the application of partial control to avoid escaping in

presence of disturbance, while using a smaller control. The results obtained in the Chapter 3

and Chapter 4 are counter-intuitive yet provide numerical evidence of finding safety in engi-

neering systems in face of what may seem to be insurmountable disturbance. In short, partial

control is an appealing method due to two important conditions: avoiding escape/transition

using a smaller control than the disturbance and sustaining dynamics in a region of phase

space without solving for a specific trajectory.

5.1 Contributions and future directions

This dissertation research aimed at using concepts from geometry and low-dimensional topol-

ogy to global transport in phase space, and demonstrated the analytical and numerical meth-

ods by applying it to problems in mechanics and engineering. In closing, I want to reflect

upon the contributions in terms of the following:

• C1 Numerical method in lobe dynamics which is an attempt at generalized computa-

tion of intersection points and areas for closed curves. This opens up a new avenue

of research in using concepts from computational geometry such as winding number,

detection of intersection points to problems of phase space transport. Future directions
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include detection of Lagrangian Coherent Structures in 3D and optimal control using

front propagation.

• C2 Escaping dynamics as a framework for studying critical events and designing avoid-

ance behavior. In this context, I introduced the notion of defining escaping zone based

on events relevant to the physics of the problem, and using geometric construction of

Poincaré surface-of-section and tube dynamics.

• C3 Application of partial control and avoiding escape from a potential well to a problem

of engineering significance. Until now, the applied problems are in population model in

ecology [88], extinction of healthy cells [89], and models of axisymmetrical galaxy [48].

I hope this reignites interest in control of chaos and escaping dynamics in engineering

systems.

• C4 Connecting the notion of discrete disturbance with continuous noise that is gener-

ated due to random forcing. This investigation lays down the foundation for discrete

representation of noise such that partial control can have broader applications.

However, there are still some “holes” to be filled, and pillars to be strengthened in this field

to complete the edifice of geometric view of phase space transport and partial control of

escaping dynamics. I summarize these as follows:

• Merging of algorithms from computational geometry with lobe dynamics to enhance

transport calculations in higher dimensional dynamical systems.

• Guarantee of safe sets existence for a given dynamical system from a parameter stand-

point? Critical dynamics near the non-existence of safe set has been observed in

computations which implies the a parameter dependence near the vanishing of safe

set.
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• Partial control time step or minimum control frequency required in applying partial

control that should complete the picture from a control engineer’s perspective.

• Phase space representation of continuous noise that should account for the effects of

the random forcing as a discrete disturbance. I hope the presented investigation in this

dissertation will launch interests in this direction.
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[38] Charles Jaffé, Shane D Ross, Martin W Lo, Jerrold Marsden, David Farrelly, and T

Uzer, Statistical theory of asteroid escape rates, Physical Review Letters , 89.1 (2002),

011101

138

http://arxiv.org/abs/0307020
http://arxiv.org/abs/0307020
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