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Abstract. In 1991, the Japanese Hiten mission used a low energy transfer with a ballistic capture
at the Moon which required less �V than a standard Hohmann transfer. In this paper, we apply the
dynamical systems techniques developed in our earlier work to reproduce systematically a Hiten-like
mission. We approximate the Sun–Earth–Moon-spacecraft 4-body system as two 3-body systems.
Using the invariant manifold structures of the Lagrange points of the 3-body systems, we are able
to construct low energy transfer trajectories from the Earth which execute ballistic capture at the
Moon. The techniques used in the design and construction of this trajectory may be applied in many
situations.
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1. How to Get to the Moon Cheaply

1.1. HITEN MISSION

The traditional approach to construct a spacecraft transfer trajectory to the moon
from the Earth is by Hohmann transfer. This type of transfer uses only 2-body
dynamics. It is constructed by determining a two-body Keplerian ellipse from an
Earth parking orbit to the orbit of the moon. See Figure 1(a). The two bodies
involved are the Earth and a spacecraft. Such a transfer requires a large �V for
the spacecraft to catch up and get captured by the moon.

In 1991, the Japanese mission, Muses-A, whose propellant budget did not per-
mit it to transfer to the moon via the usual method was given a new life with an
innovative trajectory design, based on the work of Belbruno and Miller (1993). Its
re-incarnation, renamed Hiten, used a low energy transfer with a ballistic capture at
the moon. An Earth-to-Moon trajectory of this type, which utilizes the perturbation
by the Sun, requires less fuel than the usual Hohmann transfer. See Figures 1(b)
and (c).

1.2. COUPLED THREE-BODY MODEL

In this paper, we present an approach to the problem of the orbital dynamics of
this interesting trajectory by implementing in a systematic way the view that the
Sun–Earth–Moon-spacecraft 4-body system can be approximated as two coupled
3-body systems. Below is a schematic of this trajectory in the Sun–Earth rotating
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Figure 1. (a) Hohmann transfer. (b) Low energy transfer trajectory in the geocentric inertial frame.
(c) Same trajectory in the Sun–Earth rotating frame.

frame, showing the two legs of the trajectory: (1) the Sun–Earth Lagrange point
portion and (2) the lunar capture portion. See Figure 2(a).

Within each 3-body system, using our understanding of the invariant manifold
structures associated with the Lagrange points L1 and L2, we transfer from a
200 km altitude Earth orbit into the region where the invariant manifold structure
of the Sun–Earth Lagrange points interact with the invariant manifold structure of
the Earth–Moon Lagrange points. See Figure 2(b). We utilize the sensitivity of the
‘twisting’ of trajectories near the invariant manifold tubes in the Lagrange point
region to find a fuel efficient transfer from the Sun–Earth system to the Earth–
Moon system. The invariant manifold tubes of the Earth–Moon system provide the
dynamical channels in phase space that enable ballistic captures of the spacecraft
by the Moon.

The final Earth-to-Moon trajectory is integrated in the bi-circular 4-body model
where both the Moon and the Earth are assumed to move in circular orbits about
the Earth and the Sun respectively in the ecliptic, and the spacecraft is an infin-
itesimal mass point. This bi-circular solution has been differentially corrected to

Figure 2. (a) Two legs of a Hiten-like trajectory in the Sun–Earth rotating frame. (b) The interaction
of invariant manifold tubes of the Sun–Earth and the Earth–Moon systems permits a fuel efficient
Earth-to-Moon transfer with the perturbation of the Sun.
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a fully integrated trajectory with the JPL ephemeris using JPL’s LTool (libration
point mission design tool). LTool is JPL’s new mission design tool currently under
development which is based on dynamical systems theory. This will be described
in a subsequent paper.

2. Planar Circular Restricted Three-Body Problem–PCR3BP

We start with the PCR3BP as our first model of the mission design space. Let us
recall some basic features of this model summarized in Koon et al. (2000).

2.1. THREE-BODY MODEL

The PCR3BP describes the motion of a body moving in the gravitational field of
two main bodies (the primaries) that are moving in circles. The two main bodies
could be the Sun and Earth, or the Earth and Moon, etc. The total mass is normal-
ized to 1; they are denoted mS = 1 − µ and mE = µ. The two main bodies rotate
in the plane in circles counterclockwise about their common center of mass and
with angular velocity also normalized to 1. In the actual solar system: the Moon’s
eccentricity is 0.055 and Earth’s is 0.017 which are quite close to circular. The third
body, the spacecraft, has an infinitesimal mass and is free to move in the plane.
The planar restricted 3-body problem is used for simplicity. Generalization to the
3-dimensional problem is of course important, but many of the essential dynamics
can be captured well with the planar model.

2.2. EQUATIONS OF MOTION

Choose a rotating coordinate system so that the origin is at the center of mass, the
Sun and Earth are on the x-axis at the points (−µ, 0) and (1 − µ, 0) respectively,
that is, the distance from the Sun to Earth is normalized to be 1. See Figure 3(a). Let
(x, y) be the position of the spacecraft in the plane, then the equations of motion
are

ẍ − 2ẏ = �x, ÿ + 2ẋ = �y,

where � = (x2 + y2)/2 + (1 − µ)/rs + µ/re. Here, the subscripts of � denote
partial differentiation in the variable. rs, re are the distances from the spacecraft to
the Sun and the Earth respectively. See Szebehely (1967) for the derivation.

2.3. ENERGY MANIFOLDS

The system of equations is autonomous and can be put into Hamiltonian form with
2 degrees of freedom. It has an energy integral

E = 1
2 (ẋ2 + ẏ2) − �(x, y),
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Figure 3. (a) Equilibrium points of the PCR3BP in the rotating frame. (b) Hill’s region (schematic,
the region in white), which contains a ‘neck’ about L1 and L2. (c) The flow in the region near L2,
showing a periodic orbit around L2, a typical asymptotic orbit winding onto the periodic orbit, two
transit orbits and two non-transit orbits. A similar figure holds for the region around L1.

which is related to the Jacobi constant C by C = −2E. Energy manifolds are 3-
dimensional surfaces foliating the 4-dimensional phase space. For fixed energy,
Poincaré sections are then 2-dimensional, making visualization of intersections
between sets in the phase space particularly simple.

Our main concern is the behavior of orbits whose energy is just above that of
L2. Roughly, we refer to this small energy range as the temporary capture en-
ergy range. Fortunately, the temporary capture energy manifolds for the Sun–Earth
and Earth–Moon systems intersect in phase space, making a fuel efficient transfer
possible.

2.4. EQUILIBRIUM POINTS

The PCR3BP has three collinear equilibrium (Lagrange) points which are unstable,
but for the cases of interest to mission design, we examine only L1 and L2 in this
paper. Eigenvalues of the linearized equations at L1 and L2 have one real and one
imaginary pair. Roughly speaking, the equilibrium region has the dynamics of a
saddle × harmonic oscillator.

2.5. HILL’S REGIONS

The Hill’s region which is the projection of the energy manifold onto the position
space is the region in the xy-plane where the spacecraft is energetically permitted
to move around. The forbidden region is the region which is not accessible for the
given energy. For an energy value just above that of L2, the Hill’s region contains a
‘neck’ about L1 and L2 and the spacecraft can make transition through these necks.
See Figure 3(b). This equilibrium neck region and its relation to the global orbit
structure is critical: it was studied in detail by Conley (1968), McGehee (1969),
and Llibre et al. (1985).



LOW ENERGY TRANSFER TO THE MOON 67

2.6. THE FLOW NEAR L1 AND L2

More precisely, in each region around L1 and L2, there exist four types of orbits
(see Figure 3(c)): (1) an unstable periodic Lyapunov orbit (black oval); (2) four
cylinders of asymptotic orbits that wind on to or off this period orbit; they form
pieces of stable and unstable manifolds; (3) transit orbits which the spacecraft can
use to make a transition from one region to the other; for example, passing from
the exterior region (outside Earth’s orbit) into the Earth temporary capture region
(bubble surrounding Earth) via the neck region; (4) non-transit orbits where the
spacecraft bounces back to its original region.

2.7. INVARIANT MANIFOLDS AS SEPARATRICES

Furthermore, invariant manifold tubes are global objects – they extend far beyond
the vicinity of L1 and L2. These tubes partition the energy manifold and act as
separatrices for the flow through the equilibrium region: those inside the tubes are
transit orbits and those outside the tubes are non-transit orbits. For example in the
Earth–Moon system, for a spacecraft to transit from outside the Moon’s orbit to
the Moon capture region, it is possible only through the L2 periodic orbit stable
manifold tube. Hence, stable and unstable manifold tubes control the transport of
material to and from the capture region. These tubes can be utilized also for ballistic
capture. See Figure 4.

Figure 4. (a) Trajectories inside the stable manifold tube will transit from outside Moon’s orbit to
Moon capture region. (b) Trajectory that ends in ballistic capture at the Moon.

3. Low Energy Transfer to the Moon with Ballistic Capture

3.1. TWO COUPLED THREE-BODY MODEL

By taking full advantage of the dynamics of the 4-body system (Earth, Moon, Sun,
and spacecraft), the fuel necessary to transfer from the Earth to the Moon can
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be significantly less than that required by a Hohmann transfer. However, since
the structure of the phase space of the 4-body system is poorly understood in
comparison with the 3-body system, we initially model it as two coupled planar
circular restricted 3-body systems. By doing this, we can utilize the Lagrange point
dynamics of both the Earth–Moon-spacecraft and Sun–Earth-spacecraft systems.
In this simplified model, the Moon is on a circular orbit about the Earth, the Earth
(or rather the Earth–Moon center of mass) is on a circular orbit about the Sun,
and the systems are coplanar. In the actual solar system: the Moon’s eccentricity
is 0.055, Earth’s is 0.017. and the Moon’s orbit is inclined to Earth’s orbit by 5◦.
These values are low, so the coupled planar circular 3-body problem is considered
a good starting model. An orbit which becomes a real mission is typically obtained
first in such an approximate system and then later refined through more precise
models which include effects such as out-of-plane motion, eccentricity, the other
planets, solar wind, etc. However, tremendous insight is gained by considering a
simpler model which reveals the essence of the transfer dynamics.

This is similar to the more standard approach in mission design where the solar
system is viewed as a series of 2-body problems where Keplerian theory applies.
JPL’s spectacular multiple fly-by missions such as Voyager and Galileo are based
on this Keplerian decomposition of the solar system. But when one needs to deal
with the ballistic capture regime of motion, a 3-body decomposition of the solar
system is absolutely necessary.

However, the success of this approach depends greatly on the configuration of
the specific four bodies of interest. In order for low energy transfers to take place,
the invariant manifold structures of the two 3-body systems must intersect within a
reasonable time. Otherwise, the transfer may require an impractically long time of
flight. For the Sun–Earth–Moon-spacecraft case, this is not a problem. The overlap
of these invariant manifold structures provide the low energy transfers between the
Earth and the Moon.

3.2. CONSTRUCTION OF EARTH-TO-MOON TRANSFER

The construction is done mainly in the Sun–Earth rotating frame using the Poincaré
section � (along a line of constant x-position passing through the Earth). This Poin-
caré section helps to glue the Sun–Earth Lagrange point portion of the trajectory
with the lunar ballistic capture portion. See Figures 7(c) and (d), p. 71.

The basic strategy is to find an initial condition (position and velocity) for a
spacecraft on the Poincaré section such that when integrating forward, the space-
craft will be guided by the L2 Earth–Moon manifold and get ballistically captured
by the Moon; when integrating backward, the spacecraft will hug the Sun–Earth
manifolds and return to Earth.

We utilize two important properties of the Lagrange point dynamics of the 3-
body problem. The stable manifold tube is key in targeting a capture orbit for the
Earth–Moon portion of the design. The twisting of orbits in the equilibrium region
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is key in finding a fuel efficient transfer for the Sun–Earth Lagrange point portion
of the trajectory. For more details, see Koon et al. (2000).

3.3. LUNAR BALLISTIC CAPTURE PORTION

Recall that by targeting the region enclosed by the stable manifold tube of the L2

Lyapunov orbit in the Earth–Moon system, we can construct an orbit which will
get ballistically captured by the Moon. When we transform this Poincaré cut of
the stable manifold of an Earth–Moon L2 Lyapunov orbit into the Poincaré section
of the Sun–Earth system, we obtain a closed curve. A point interior to this curve
will approach the Moon when integrated forward. See Figure 5. Assuming the Sun
is a negligible perturbation to the Earth–Moon-spacecraft 3-body dynamics during
this leg of the trajectory, any spacecraft with initial conditions within this closed
curve will be ballistically captured by the Moon. ‘Ballistic capture by the Moon’
means an orbit which under natural dynamics gets within the sphere of influence
of the Moon (20,000 km) and performs at least one revolution around the Moon. In
such a state, a slight �V will result in a stable capture (closing off the necks at L1

and L2).

Figure 5. (a) The stable manifold cut of an Earth–Moon L2 orbit in the Poincarè section of the
Sun–Earth system. (b) A point interior to this cut, with the correct phasing of the Moon, will reach
the Moon’s ballistic capture region when integrated forward.

3.4. TWISTING OF ORBITS AND SUN–EARTH LAGRANGE POINT PORTION

Since the twisting of orbits in the equilibrium region is key in finding the Sun–Earth
Lagrange point portion of the design, we would like to review this property briefly.
In Koon et al. (2000), we learn that orbits twist in the equilibrium region following
roughly the Lyapunov orbit. The amount of twist of an orbit depends sensitively on
its distance from the manifold tube. The closer to the manifold tube an orbit begins
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on its approach to the equilibrium region, the more it will be twisted when it exits
the equilibrium region. Hence, with small change in the initial condition (such as a
small change in velocity at a fixed point), we can change the destination of an orbit
dramatically. In fact, we can use this sensitivity to target the spacecraft back to a
200 km Earth parking orbit.

Look at the Poincaré section � in Figure 6(a). Notice that how a minute line
strip q2q1 of orbits just outside of the unstable manifold cut, when integrated
backward, gets stretched into a long strip P −1(q2)P

−1(q1) of orbits that wraps
around the whole stable manifold cut. Recall that points on q2q1 represent orbits
which have the same position but slightly different velocity. But their pre-image
P −1(q2)P

−1(q1) can reach any position on the lower line where the stable manifold
tube intersects (see Figure 6(b)).

Pick an energy in the temporary capture range of the Sun–Earth system which
has L2 orbit manifolds that come near a 200 km altitude Earth parking orbit. Com-
pute the Poincaré section � (see Figure 6(a)). The curve on the right is the Poincaré
cut of the unstable manifold of the Lyapunov orbit around the Sun–Earth L2.
Picking an appropriate initial condition just outside this curve, we can backward
integrate to produce a trajectory coming back to the Earth parking orbit.

Figure 6. (a) Line strip q2q1 outside of unstable manifold cut gets stretched into a long strip
P−1(q2)P−1(q1) that wraps around stable manifold cut. (b) With infinitesimal changes in velocity,
any point near lower tube cross-section can be targeted (integrating backward).

3.5. CONNECTING THE TWO PORTIONS

We can vary the phase of the Moon until the Earth–Moon L2 manifold cut intersects
the Sun–Earth L2 manifold cut. See Figures 7(a) and (b). In the region which is in
the interior of the gray curve but in the exterior of the black curve, an orbit will
get ballistically captured by the Moon when integrated forward; when integrated
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Figure 7. (a) and (b) Vary the phase of the Moon until Earth–Moon L2 manifold cut intersects
Sun–Earth L2 manifold cut. (c) Pick a point in the interior of gray curve but in the exterior of black
curve. (d) An orbit will get ballistically captured by the Moon when integrated foreword; when
integrated backward, orbit will hug the invariant manifolds back to the Earth.

backward, the orbit will hug the unstable manifold back to the Sun–Earth L2 equi-
librium region with a twist, and then hug the stable manifold back towards the
position of the Earth parking orbit. See Figures 7(c) and (d).

With only a slight modification (a small mid-course �V of 34 m/s at the patch
point), this procedure produces a genuine solution integrated in the bi-circular 4-
body problem. Since the capture at the Moon is natural (zero �V ), the amount
of on-board fuel necessary is lowered by about 20% compared to a traditional
Hohmann transfer. This bi-circular solution has been differentially corrected to a
fully integrated trajectory with JPL ephemeris using JPL’s LTool. This is the subject
of a future paper.
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3.6. WHY DOES IT WORK?

What follows is a couple of heuristic arguments for using the coupled 3-body
model. When outside the Moon’s small sphere of influence (20,000 km), which
is most of the pre-capture flight, we can consider the Moon’s perturbation on
the Sun–Earth-spacecraft 3-body system to be negligible. Thus, we can utilize
Sun–Earth Lagrange point invariant manifold structures. The mid-course �V is
performed at a point where the spacecraft is re-entering the Earth’s sphere of influ-
ence (900,000 km), where we can consider the Sun’s perturbation on the Earth–
Moon-spacecraft 3-body system to be negligible. Thus, Earth–Moon Lagrange
point structures can be utilized for the lunar portion of the trajectory.

Moreover, the fact that the patch point �V is so small and may even be elim-
inated can be understood by considering the following. From a 200 km circular
orbit around the Earth, it requires approximately 3150 m/s (provided by the launch
vehicle) to reach the Earth–Moon L1 and L2. For another 50 m/s, you can reach the
Sun–Earth L1 and L2! In other words, a spacecraft needs roughly the same amount
of energy to reach the Sun–Earth and the Earth–Moon L1 and L2. This fortuitous
coincidence is what enables these low energy lunar transfer and capture orbits.

4. Conclusion

We have laid bare the dynamical mechanism for a Hiten-like mission. The theory of
Lagrange point dynamics of the 3-body system developed in Koon et al. (2000) is
crucial in understanding this problem. In many previous applications of dynamical
systems theory to mission design, the focus has been on using the trajectory arcs on
the invariant manifolds as initial guesses for the desired end-to-end trajectory. In
this paper, we have shown that the tubular regions enclosed by the manifolds, the
regions exterior to the manifolds, as well as the manifolds themselves all may be
used to advantage depending on the desired characteristics of the final trajectory.
Mission designers with this knowledge can pick and choose to their hearts’ content,
an infinite variety of trajectories to suit almost any purpose at hand.
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