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Abstract

This paper addresses the computation of the required trajectory correction maneuvers for a halo orbit space mission to compensate for
the launch velocity errors introduced by inaccuracies of the launch vehicle. By combining dynamical systems theory with optimal control
techniques, we are able to provide a compelling portrait of the complex landscape of the trajectory design space. This approach enables
automation of the analysis to perform parametric studies that simply were not available to mission designers a few years ago, such as
how the magnitude of the errors and the timing of the 6rst trajectory correction maneuver a7ects the correction 8V . The impetus for
combining dynamical systems theory and optimal control in this problem arises from design issues for the Genesis Discovery Mission
being developed for NASA by the Jet Propulsion Laboratory. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction and background

1.1. The Genesis Mission

The Genesis Discovery Mission is a solar wind sample
return mission (see Lo et al., 1998). It is one of NASA’s
6rst robotic sample return missions and is scheduled for
launch in the summer of 2001 to a halo orbit in the vicin-
ity of the Sun–Earth L1 Lagrange point; L1 is one of the
6ve equilibrium points in the circular restricted three-body
problem (CR3BP). Fig. 1 shows a three dimensional view
of the Genesis trajectory.
In the standard convention, L1 is the unstable equilibrium

point between the Sun and the Earth at roughly 1.5 million
km from the Earth in the direction of the Sun. Once there,
the spacecraft will remain in a halo orbit for two years to
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collect solar wind samples before returning them to the Earth
for study into the origins of the solar system. Fig. 1 shows
the key parts of the trajectory: the transfer to the halo, the
halo orbit itself, and the return to Earth. The 6gure is plotted
in a rotating frame, which is often used in the study of the
three-body problem. The frame is de6ned by 6xing the x-axis
along the Sun–Earth line, the z-axis in the direction normal
to the ecliptic, and with the y-axis completing a right-handed
coordinate system. Viewed from behind the Earth, the orbit
appears as a halo around the Sun, hence its name (originally
named for lunar halo orbits by Farquhar (1968)).
The Genesis trajectory is the 6rst mission to be fully

designed using dynamical systems theory (see Howell,
Barden, & Lo, 1997). As Fig. 1 shows, the trajectory trav-
els between neighborhoods of the L1 and L2 libration points
with the purpose of returning the samples to Earth (L2 is
roughly 1.5 million km on the opposite side of the Earth
from the Sun). In dynamical systems theory, this is closely
related to the existence of a heteroclinic connection between
the L1 and L2 regions. The deeper dynamical signi6cance
of the heteroclinic connection is explored in Koon, Lo,
Marsden, and Ross (2000) for the planar problem, although
similar phenomena are expected in the three dimensional
problem.
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Fig. 1. The Genesis trajectory. The Earth is at the origin, surrounded by
the Moon’s orbit.

One of the attractive and interesting features of the Gen-
esis trajectory design is that the three-year mission, from
launch all the way back to Earth return, requires only a sin-
gle small deterministic maneuver when injecting onto the
halo orbit (which is actually “free”, 0 m=s, in the optimal
case). It is extremely diJcult to use traditional classical al-
gorithms to 6nd such optimal and near-optimal solutions, so
the design of such a low energy trajectory is facilitated by
using dynamical systems methods. This is achieved by using
the stable and unstable manifolds as guides in determining
the end-to-end trajectory.
Our main goal in this paper is to show the feasibility of

merging optimal control software with dynamical systems
methods to compensate for launch vehicle errors, to which
libration point missions are particularly sensitive. For this
task, we have used a particular piece of software, COOPT, as
our demonstration tool. There are many other good software
packages which could have been used, such as MISER3,
used in Liu, Teo, Jennings, and Wang (1998), and Rehbock,
Teo, Jennings, and Lee (1999), and the iterative dynamic
programming approach of Luus (2000). However, our goal
is not to compare software packages. Rather, it is to combine
dynamical systems theory with optimal control techniques
to solve a sophisticated problem for an actual space mission.

1.2. Halo orbits

Halo orbits are large three-dimensional orbits shaped like
the edges of a potato chip. The y-amplitude of the Genesis
halo orbit, which extends from the x-axis to the maximum
y-value of the orbit, is about 780,000 km. Note that this is
bigger than the radius of the orbit of the Moon, which is
about 380,000 km. The computation of halo orbits follows
standard nonlinear trajectory computation algorithms based
on parallel shooting. Due to the sensitivity of the problem, an
accurate 6rst guess is essential, since the halo orbit is actually
an unstable orbit (albeit with a fairly long time constant

in the Sun–Earth system). This 6rst guess is provided by
a high order analytic expansion of minimum third order
using the Lindstedt–PoincarKe method. For details of halo
orbit computations and general algorithms, see Richardson
(1980) and Howell and Pernicka (1988).
In the CR3BP model, which is a time independent system,

halo orbits are purely periodic solutions. However, if we
take into account all the perturbative e7ects of the full solar
system model, the periodic solution ceases to exist and in its
place are quasiperiodic solutions nearby in phase space. For
convenience, we still refer to these solutions which shadow
the periodic solutions of the simpler model as “halo” orbits.
The halo orbit is an unstable orbit, behaving dynamically

like a saddle point in the directions of spectrally unstable
and stable eigenvalues. There is a family of asymptotic tra-
jectories that departs from the halo orbit called the unstable
manifold and also a family of asymptotic trajectories which
wind onto the halo orbit called the stable manifold. Each
of these families form a two-dimensional surface that is,
roughly speaking, a twisted tubular surface emanating from
the halo orbit.
For Genesis, these manifolds are absolutely crucial to re-

turn the samples to Earth and land at the speci6ed site, the
Utah Test and Training Range. The stable manifold, which
winds onto the halo orbit, is used to design the transfer tra-
jectory which delivers the Genesis spacecraft from launch
to halo orbit insertion (HOI). The unstable manifold, which
winds o7 of the halo orbit, is used to design the return tra-
jectory which brings the spacecraft and its precious samples
back to Earth via the nearly heteroclinic connection. See
Koon et al. (2000) for the current state of the computation
of homoclinic and heteroclinic orbits in this problem.

1.3. The transfer to the halo orbit

The transfer trajectory is designed using the following
procedure. A halo orbit H (t) is 6rst selected, where t
represents time. The stable manifold of H , denoted W s,
consists of a family of asymptotic trajectories which take
in6nite time to wind onto H . However, there is a family of
trajectories that lie arbitrarily close to W s that require just
a few months to transfer between Earth and the halo orbit.
These trajectories are said to shadow the stable manifold. It
is these shadow trajectories that we can compute and that
are extremely useful to the design of the Genesis transfer
trajectory.
A simple way to compute an approximation of W s is

based on Floquet theory. The basic idea is to linearize the
equations of motion about the periodic orbit and then use the
monodromy matrix provided by Floquet theory to generate a
linear approximation of the stable manifold associated with
the halo orbit. The linear approximation, in the form of
a state vector, is integrated in the nonlinear equations of
motion to produce the approximation of the stable manifold.
In the case of quasiperiodic orbits that are not too far from
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periodic orbits, one approximates the orbit as periodic and
the same algorithm is applied to compute approximations
of W s (see Howell et al., 1997; GKomez, Masdemont, and
SimKo, 1993).
In this paper, we will assume that the halo orbit, H (t),

and the stable manifold M (t) are 6xed and provided. Hence
we will not dwell further on the theory of their computation
which is well covered in the references (see Howell et al.,
1997). Instead, let us turn our attention to the trajectory
correction maneuver (TCM) problem.

1.4. The trajectory correction maneuver

Genesiswill be launched from aDelta 7326 launch vehicle
using a Thiakol Star37 motor as the 6nal upper stage. The
most important error introduced by the inaccuracies of the
launch vehicle is the velocity magnitude error. In this case,
the expected error is 7 m=s (1 sigma value) relative to a boost
of approximately 3200 m=s from a circular 200 km altitude
Earth orbit. In the space industry, the change in velocity
is called the 8V . It is typical in space missions to use the
magnitude of the required 8V as a measure of spacecraft
fuel performance.
Although a 7 m=s error for a 3200 m=s maneuver may

seem small, it actually is considered quite large. Unfortu-
nately, one of the characteristics of halo orbit missions is
that, unlike interplanetary mission launches, they are ex-
tremely sensitive to launch errors. Typical interplanetary
launches can correct launch vehicle errors 7–14 days after
the launch. In contrast, halo orbit missions must generally
correct the launch error within the 6rst 7 days after launch or
the 8V required to correct will increase beyond the space-
craft’s capability. The most important trajectory correction
maneuver is called TCM1, being the 6rst TCM of the mis-
sion. Two clean up maneuvers, TCM2 and TCM3, gener-
ally follow TCM1 after a week or more, depending on the
situation. The Genesis8V budget for the TCMs is 150 m=s.
From the energy equation for a spacecraft in a conic or-

bit about the Earth, E = V 2=2 − GM=R, where E is Keple-
rian energy, V is velocity, GM is the gravitational mass of
the Earth, and R is the distance of the spacecraft from the
Earth’s center, it follows that �V =�E=V , where �V and �E
denote the variations in velocity and energy, respectively.
The launch velocity error imparts an energy error �E to the
spacecraft transfer orbit. In particular, for a highly elliptical
orbit such as the one for Genesis soon after launch, V de-
creases sharply as a function of time since launch. Hence, the
magnitude of the correction maneuver 8V required to can-
cel the resulting �V grows sharply with time since launch.
For a large launch vehicle error, which is possible in the
case of Genesis, the correction maneuver TCM1 can quickly
grow beyond the capability of the spacecraft’s propulsion
system.
The computation of TCMs is performed on the ground,

relying upon accurate knowledge of the spacecraft’s posi-

tion and velocity. The time necessary for initial spacecraft
checkout procedures, which frequently require several days
after launch, compel us to investigate the e7ect of delays
in the timing of TCM1. To thoroughly check out the space-
craft’s position, velocity, and condition, it is desirable to de-
lay TCM1 by as long as possible, even at the expense of an
increased 8V for TCM1. Consequently, the Genesis navi-
gation team prefers that TCM1 be performed at 2–7 days
after launch, or later if at all possible.
The design of the current Genesis TCM1 retargets the

state after launch back to the nominal HOI state (see Lo et
al., 1998). This approach is based on linear analysis and is
adequate only if TCM1 were to be performed within 24 h
after launch. But as emphasized, this will not be the case
for Genesis, which can permit a TCM1 only after 24 h past
launch, and probably more like 2–7 days past launch.
The requirement of a relatively long time delay between

launch (when error is imparted) and TCM1 (when error
is corrected) suggests that one use a nonlinear approach,
combining dynamical systems theory with optimal control
techniques. We explore two similar but slightly di7erent
approaches and are able to obtain in both cases an optimal
maneuver strategy that 6ts within the Genesis8V budget of
150 m=s for the transfer portion of the trajectory. These are:

(1) HOI technique: use optimal control techniques to retar-
get the halo orbit with the original nominal trajectory
as the initial guess.

(2) MOI technique: target the stable manifold.

Both methods are shown to yield good results.

2. Optimal control for trajectory correction maneuvers

We now introduce the general problem of optimal control
for the spacecraft trajectory planning problem. We start by
recasting the TCM problem as a spacecraft trajectory plan-
ning problem. Mathematically they are exactly the same.
We discuss the spacecraft trajectory planning problem as an
optimization problem and highlight the formulation char-
acteristics and particular solution requirements. Then the
loss in fuel eJciency caused by possible perturbation in the
launch velocity and by di7erent delays in TCM1 is exactly
the sensitivity analysis of the optimal solution. COOPT, the
software we use, is an excellent tool in solving this type
of problem, both in providing a solution for the trajectory
planning problem with optimal control, and in studying the
sensitivity of di7erent parameters.
We emphasize that the objective in this work is not to

design the original nominal transfer trajectory, but rather
to investigate recovery issues related to possible launch ve-
locity errors which cause the spacecraft to deviate from
the nominal trajectory. We therefore assume that a nominal
transfer trajectory (corresponding to zero errors in launch
velocity) is available. For the nominal trajectory in our
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numerical experiments in this paper, we do not use the ac-
tual Genesis mission transfer trajectory, but rather an ap-
proximation obtained with a more restricted model, which
has single maneuver of about 13 m=s at the point of insertion
onto the halo orbit. It has been shown elsewhere (e.g., How-
ell et al., 1997) that the general qualitative characteristics
found in the restricted models translate well when extended
into more accurate models; we expect the same correlation
with this work.

2.1. Recasting TCM as a trajectory planning problem

Although di7erent from a dynamical systems perspective,
the HOI and MOI problems are very similar once cast as
optimization problems. In the HOI problem, a 6nal maneu-
ver (jump in velocity) is allowed at THOI = tmax, while in
the MOI problem, the 6nal maneuver takes place on the sta-
ble manifold at TMOI¡tmax and no maneuver is allowed at
THOI = tmax. A halo orbit insertion trajectory design problem
can be simply posed as the following.

Statement of the problem: Find the maneuver times
and sizes to minimize fuel consumption (8V ) for a
trajectory starting near Earth and ending on the spec-
i?ed halo orbit around the Lagrange point L1 of the
Sun–Earth system at a position and with a velocity
consistent with the HOI time.

One can think of the TCM problem as a rendezvous prob-
lem. After launch, and the subsequent launch error, the actual
spacecraft goes o7 the nominal trajectory. Since placement
of the spacecraft on the nominal trajectory at the appropriate
location and time is important for our problem, imagine that
a virtual spacecraft remains on the nominal trajectory (cor-
responding to zero launch error). Our goal then is to perform
maneuvers such that the actual spacecraft will rendezvous
with the virtual spacecraft on the nominal trajectory. From
the rendezvous point onward, the actual spacecraft will then
be on the nominal trajectory.
The optimization problem as stated has two important

features. First, it involves discontinuous controls, since the
impulsive maneuvers are represented by jumps in the veloc-
ity of the spacecraft. A reformulation of the problem to cast
it into the framework required by continuous optimal con-
trol algorithms will be discussed later in this section. Sec-
ondly, the 6nal halo orbit insertion time THOI, as well as all
intermediate maneuver times, must be included among the
optimization parameters (p). This too requires further refor-
mulation of the dynamical model to capture the inPuence
of these parameters on the solution at a given optimization
iteration.
Next, we discuss the reformulations required to solve the

HOI discontinuous control problem; modi6cations of the
following procedure required to solve the MOI problem
are discussed in Section 3.2. We assume that the evolution
of the spacecraft is described by the equations of motion
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Fig. 2. Transfer trajectory. Maneuvers take place at times Ti; i=1; 2; : : : ; n.
In the stable manifold insertion problem, there is no maneuver at Tn, i.e.
8vn = 0.

(e.o.m.), a generic set of six ODEs ẋ = f(t; x), where x =
(xp; xv)∈R6 contains both positions (xp) and velocities
(xv). The dynamical model giving the e.o.m. can be either
the CR3BP or a more complex model that incorporates the
inPuence of the Moon and other planets. In this paper, we
use the CR3BP approximation; other models will be inves-
tigated in future work.
To deal with the discontinuous nature of the impulsive

control maneuvers, the e.o.m. are solved simultaneously on
each interval between two maneuvers. Let the maneuvers
M1; M2; : : : ; Mn take place at times Ti; i = 1; 2; : : : ; n and
let xi(t); t ∈ [Ti−1; Ti] be the solution of the e.o.m. on the
interval [Ti−1; Ti] (see Fig. 2).
To capture the inPuence of the maneuver times on the

solution of the e.o.m. and to be able to solve the e.o.m.
simultaneously, we scale the time in each interval by the
duration 8Ti = Ti − Ti−1. This is a standard technique for
optimizing over the 6nal integration time. As a consequence,
all time derivatives in the e.o.m. are scaled by 1=8Ti. The
dimension of the dynamical system is thus increased to 6n.
Position continuity constraints are imposed at each ma-

neuver and in addition, the 6nal position is forced to lie on
the given halo orbit (or stable manifold) at the proper time,
that is,

xpi (Ti) = xpi+1(Ti); i = 1; 2; : : : ; n− 1; (1a)

xpn(Tn) = xpH(Tn); (1b)

where the halo orbit is parameterized by the HOI time Tn.
Recall that the halo orbit, H (t) = (xpH(t); x

v
H(t)), (and also

the stable manifold M (t)), is 6xed and provided. Eq. (1b)
is the constraint for the rendezvous problem at hand. If the
insertion phase were not imposed, then the position on the
halo orbit would be parameterized by an independent vari-
able, i.e., the right-hand side of Eq. (1b) would be xpH(�)
where � is a free optimization parameter.
Additional constraints dictate that the 6rst maneuver

(TCM1) is delayed by at least a prescribed amount TCM1min
and that the order of maneuvers is respected, that is,

T1¿TCM1min ; (2a)

Ti−1¡Ti ¡Ti+1; i = 1; 2; : : : ; n− 1: (2b)
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With a cost function de6ned as some measure of the velocity
discontinuities

8vi = xvi+1(Ti)− xvi (Ti); i = 1; 2; : : : ; n− 1;

8vn = xvH(Tn)− xvn(Tn);
(3)

the optimization problem becomes

min
Ti;xi ;8vi

C(8vi); (4)

subject to the constraints in Eqs. (1)–(3). Note that veloci-
ties at the intermediate maneuver points and the 6nal inser-
tion point are matched using bursts 8vi ; i= 1; 2; : : : ; n− 1,
and vn, respectively. More details on selecting the form of
the cost function are given in Section 3.

2.2. Launch errors and sensitivity analysis

In many optimal control problems, obtaining an optimal
solution is not the only goal. The inPuence of problem pa-
rameters on the optimal solution (the so called sensitivity of
the optimal solution) is also needed. Sensitivity information
provides a 6rst-order approximation to the behavior of the
optimal solution when parameters are not at their optimal
values or when constraints are slightly violated.
In the problems treated in this paper, for example, we are

interested in estimating the changes in fuel eJciency (8V )
caused by possible perturbations in the launch velocity (�v0)
and by di7erent delays in the 6rst maneuver (TCM1). As
we show in Section 3, the cost function is very close to be-
ing linear in these parameters (TCM1min and �v0). Therefore,
evaluating the sensitivity of the optimal cost is a very inex-
pensive and accurate method of assessing the inPuence of
di7erent parameters on the optimal trajectory (especially in
our problem).
In COOPT, we make use of the Sensitivity Theorem (see

Bertsekas, 1995) for nonlinear programming problems with
equality and=or inequality constraints:

Theorem 2.1. Let f; h; and g be twice continuously
di@erentiable and consider the family of problems

minimize f(x)

subject toh(x) = u; g(x)6 v;
(5)

parameterized by the vectors u∈Rm and v∈Rr . Assume
that for (u; v) = (0; 0) this problem has a local minimum
x∗; which is regular and which together with its associ-
ated Lagrange multiplier vectors %∗ and &∗; satis?es the
second order suAciency conditions. Then there exists an
open sphere S centered at (u; v) = (0; 0) such that for
every (u; v)∈ S there is an x(u; v)∈Rn; %(u; v)∈Rm; and
&(u; v)∈Rr ; which are a local minimum and associated La-
grange multipliers of problem (5). Furthermore; x(·); %(·);
and &(·) are continuously di@erentiable in S and we have
x(0; 0) = x∗; %(0; 0) = %∗; &(0; 0) = &∗. In addition; for all

(u; v)∈ S; there holds∇up(u; v)=−%(u; v) and∇vp(u; v)=
−&(u; v) where p(u; v) =f(x(u; v)) is the optimal cost pa-
rameterized by (u; v).

The inPuence of delaying the maneuver TCM1 is thus
directly computed from the Lagrange multiplier associated
with the constraint of Eq. (2a). To evaluate sensitivities of
the cost function with respect to perturbations in the launch
velocity (�v0), we must include this perturbation explicitly
as an optimization parameter and 6x it to some prescribed
value through an equality constraint. That is, the launch
velocity is set to v(0) = vnom0 (1+ �v0=||vnom0 ||), where vnom0 is
the nominal launch velocity and �v0 = �, for a given �. The
Lagrange multiplier associated with the constraint �v0 = �
yields the desired sensitivity.

2.3. Description of the COOPT software

COOPT is a software package for optimal control and
optimization of systems modeled by di7erential-algebraic
equations (DAE) (see Brenan, Campbell, & Petzold,
1995), developed by the Computational Science and
Engineering Group at the University of California, Santa
Barbara. It has been designed to control and optimize a
general class of DAE systems. Here, we describe the basic
methods used in COOPT. We consider the DAE system
F(t; x; ẋ; p; u(t)) = 0; x(t1; r) = x1(r), where the DAE is
index zero, one, or semi-explicit index two (see Ascher
& Petzold, 1998 or Brenan et al., 1995) and the initial
conditions have been chosen so that they are consistent
(that is, the constraints of the DAE are satis6ed). The
control parameters p and r and the vector-valued control
function u(t) must be determined such that the objective
function

∫ tmax
t1

)(t; x(t); p; u(t)) dt +*(tmax; x(tmax); p; r); is
minimized and some additional equality and=or inequality
constraints g(t; x(t); p; r; u(t))R 0; are satis6ed. The opti-
mal control function u∗(t) is assumed to be continuous. To
represent u(t) in a low-dimensional vector space, we use
piecewise polynomials on [t1; tmax], where their coeJcients
are determined by the optimization. For ease of presentation
we can therefore assume that the vector p contains both the
parameters and these coeJcients and discard the control
function u(t) in the remainder of this section. Also, we
consider that the initial states are 6xed and therefore dis-
card the parameters r from the formulation of the optimal
control problem. Hence, we consider

F(t; x; ẋ; p) = 0; x(t1) = x1; (6a)

min
∫ tmax

t1
 (t; x(t); p) dt +*(tmax; x(tmax); p); (6b)

g(t; x(t); p)R 0: (6c)

There are a number of well-known methods for direct
discretization of the optimal control problem in Eqs. (6),
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for the case in which the DAEs can be reduced to ordinary
di7erential equations (ODEs) in standard form. COOPT im-
plements the single shooting method and a modi6ed version
of the multiple shooting method, both of which allow the
use of adaptive DAE software.
In the multiple shooting method, the time interval [t1; tmax]

is divided into subintervals [ti; ti+1] (i = 1; : : : ; Ntx), and
the di7erential equations in Eq. (6a) are solved over each
subinterval, where additional intermediate variables Xi are
introduced. On each subinterval we denote the solution at
time t of Eq. (6a) with initial value Xi at ti by x(t; ti;Xi ; p).
Continuity between subintervals in the multiple shoot-

ing method is achieved via the continuity constraints
Ci
1(Xi+1;Xi ; p) ≡ Xi+1 − x(ti+1; ti ;Xi ; p) = 0:
The additional constraints of Eq. (6c) are required to

be satis6ed at the boundaries of the shooting intervals
Ci
2(Xi ; p) ≡ g(ti;Xi ; p)R 0. Following common prac-

tice, we write -(t) =
∫ t
t1
 (�; x(�); p) d�; which satis6es

-′(t) =  (t; x(t); p), -(t1) = 0. This introduces another
equation and variable into the di7erential system in Eq.
(6a). The discretized optimal control problem becomes

min
X2 ;:::;XNtx ;p

-(tmax) +*(tmax);

s:t: Ci
1(Xi+1;Xi ; p) = 0 and C i

2(Xi ; p)R 0:
(7)

This problem can be solved by an optimization algorithm.
We use the solver SNOPT (see Gill, Murray, & Saunders,
1997), which incorporates a sequential quadratic program-
ming (SQP) method. The SQP methods require a gradient
and Jacobian matrix that are the derivatives of the objec-
tive function and constraints with respect to the optimization
variables. We compute these derivatives via DAE sensitivity
software DASPK3.0 (Li & Petzold, 2000). The sensitivity
equations to be solved by DASPK3.0 are generated via the
automatic di7erentiation software ADIFOR (see Bischof,
Carle, Corliss, Griewank, & Hovland, 1992).
This basic multiple-shooting type of strategy can work

very well for small-to-moderate size ODE systems, and has
an additional advantage that it is inherently parallel. How-
ever, for large-scale ODE and DAE systems there is a prob-
lem because the computational complexity grows rapidly
with the dimension of the ODE system. COOPT implements
a highly eJcient modi6ed multiple shooting method (Gill,
Jay, Leonard, Petzold, & Sharma, 2000; Serban and Pet-
zold, 2000) which reduces the computational complexity to
that of single shooting for large-scale problems. However,
we have found it suJcient to use single shooting for the
trajectory design problems treated in this paper.

3. Numerical results

Circular restricted three-body problem: As mentioned
earlier, we use the e.o.m. derived under the CR3BP assump-
tion as the underlying dynamical model. In this model, it is

µ

1−µ

x

z

y

S

S/C

E

2d

1d

Fig. 3. Coordinate frame in the CR3BP approximation.

assumed that the primaries (the Earth and Sun in our case)
move on circular orbits around the center of mass of the
system and that the third body (the spacecraft) does not
inPuence the motion of the primaries. We write the e.o.m.
in a rotating frame, as in Fig. 3.
Using nondimensional units, the e.o.m. in the CR3BP

model are

ẋ1 = x4; ẋ4 = 2x2 +
@U
@x1

;

ẋ2 = x5; ẋ5 =−2x1 + @U
@x2

;

ẋ3 = x6; ẋ6 =
@U
@x3

;

(8)

where x = [x1; x2; x3; x4; x5; x6]T = [x; y; z; vx; vy; vz]T, U =
1
2(x

2
1 + x22) + (1 − &)=d1 + &=d2, with d1 = ((x1 + &)2 +

x22 + x23)
1=2 and d2 = ((x1 − 1 + &)2 + x22 + x23)

1=2, and
& = 3:03591 × 10−6 is the ratio between the mass of the
Earth and the mass of the Sun–Earth system. In the above
equations, time is scaled by the period of the primaries or-
bits (T=22, where T = 1 year), positions are scaled by the
Sun–Earth distance (L ≡ d⊕�=1:49597927×108 km), and
velocities are scaled by the Earth’s average orbital speed
around the Sun (22L=T = 29:80567 km=s).
Choice of cost function: At this point we need to give

some more details on the choice of an appropriate cost func-
tion for the optimization problem (4). The spacecraft per-
formance is measured in terms of the maneuver sizes 8vi.
We consider the following two cost functions, C1(8v) =∑n

i=1 ||8vi||2 and C2(8v) =
∑n

i=1 ||8vi||, where || · || de-
notes the usual Euclidean norm.
The second of these is physically the most meaningful, as

it measures the total sum of the maneuver sizes, but such a
cost function is nondi7erentiable whenever one of the ma-
neuvers vanishes. This problem occurs already at the 6rst
optimization iteration, as the initial guess transfer trajectory
only has a single nonzero maneuver at halo insertion. The
6rst cost function, however, is di7erentiable everywhere.
The cost function C1 is more appropriate for the opti-

mizer, but it raises two new problems. It is not as physically
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meaningful as the cost function C2, and in some cases, de-
creasing C1 may leads to increases in C2.
To resolve these issues, we use the following three-stage

optimization sequence:

(1) Starting with the nominal transfer trajectory as initial
guess, and allowing n maneuvers, we minimize C1 to
obtain a 6rst optimal trajectory, T∗

1 .
(2) Using T∗

1 as initial guess, we minimize C2 to obtain
T∗

2 . During this optimization stage, some maneuvers
can become very small. After each optimization iter-
ation we monitor the feasibility of the iterate and the
sizes of all maneuvers. When at least one maneuver de-
creases under a prescribed threshold (typically 0:1 m=s)
at some feasible con6guration, we stop the optimization
algorithm.

(3) If necessary, a third optimization stage, using T∗
2 as

initial guess and C2 as cost function is performed with
a reduced number of maneuvers Vn (obtained by remov-
ing those maneuvers identi6ed as “zero maneuvers” in
step 2).

Merging optimal control with dynamical systems theory:
Next, we present results for the halo orbit insertion problem
(Section 3.1) and for the stable manifold insertion problem
(Section 3.2). In both cases we are investigating the e7ect
of varying times for TCM1min on the optimal trajectory,
for given perturbations in the nominal launch velocity. The
staggered optimization procedure described above is applied
for values of TCM1min ranging from 1 to 5 day and pertur-
bations in the magnitude of the launch velocity �v0 ranging
from −7 m=s to +7 m=s. We present typical transfer trajec-
tories, as well as the dependency of the optimal cost on the
two parameters of interest. In addition, using the algorithm
presented in Section 2.2, we perform a sensitivity analysis
of the optimal solution. For the Genesis TCM problem it
turns out that sensitivity information of 6rst order is suJ-
cient to characterize the inPuence of TCM1min and �v0 on the
spacecraft performance.
The merging of optimal control and dynamical systems

has been done through either (1) the use of the nominal
transfer trajectory as a really accurate initial guess, or (2)
the use of the stable invariant manifold.

3.1. Halo orbit insertion (HOI) problem

In this problem, we directly target the selected halo orbit
with the last maneuver taking place at the HOI point. Using
the optimization procedure described in the previous section,
we compute the optimal cost transfer trajectories for various
combinations of TCM1min and �v0. In all of our computations,
the launch conditions are those corresponding to the nominal
transfer trajectory, i.e.,

xnom0 = 1:496032475412839× 108 km

ynom0 = 1:943203061350240× 103 km
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Fig. 4. HOI problem. Optimal transfer trajectory for TCM1min = 4 days,
�v0 = 3 m=s, and n = 4. The optimal trajectory has Vn = 2 maneuvers
(represented by circles).

znom0 =−2:479095822700627× 103 km

(vnom0 )x =−4:612683390613825 km=s

(vnom0 )y = 9:412034579485869 km=s

(vnom0 )z =−3:479627336419212 km=s

with the launch velocity perturbed as described in Section
2.2. These initial conditions are given in the Earth–Sun
barycentered rotating frame.
As an example, we present complete results for the case

in which the launch velocity is perturbed by −3 m=s and
the 6rst maneuver correction is delayed by at least 3 days.
Initially, we allow for n = 4 maneuvers. In the 6rst op-
timization stage, the second type of cost function has a
value of C∗

1 = 1153:998 (m=s)2 after 5 iterations. This cor-
responds to C∗

2 = 50:9123 m=s. During the second opti-
mization stage, we monitor the sizes of all four maneu-
vers, while minimizing the cost function C1. After 23 itera-
tions, the optimization was interrupted at a feasible con6g-
uration when at least one maneuver decreased below a pre-
set tolerance of 0:1 m=s. The corresponding cost function is
C∗∗
2 = 45:1216 m=s with four maneuvers of sizes 33.8252,
0.0012, 0.0003, and 11:2949 m=s. In the last optimization
stage we remove the second and third maneuvers and again
minimize the cost function C2. After 7 optimization itera-
tions an optimal solution with C∗∗∗

2 = 45:0292 m=s is ob-
tained. The two maneuvers of the optimal trajectory have
sizes of 33.7002 and 11:3289 m=s and take place at 3.0000
and 110.7969 days after launch, respectively. The resulting
optimal trajectory is presented in Fig. 4.
Lagrange multipliers associated with the constraints of

Eq. (2a) and �v0 = � give the sensitivities of the optimal
solution with respect to launching velocity perturbation,
−10:7341 (m=s)=(m=s), and delay in the 6rst maneuver cor-
rection, 4.8231 (m=s)=day.
Computational and communication times: All experi-

ments were performed on a PC workstation with an Intel
Pentium III 800 MHz processor running Linux 2.2.12. The
code was compiled with gcc with second level optimiza-
tion. A typical run (the 6rst optimization stage of the case
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Fig. 5. HOI problem. InPuence of TCM1min and �v0 on the optimal cost
(C2 in m=s) for n = 2.

presented in Fig. 5) takes 0:29 s for the problem set-up and
4:23 s for the actual optimization.
For an actual TCM, this computation step is practically

instantaneous. Most of the time delay is taken up before
this step, by the determination of the position and velocity
of the spacecraft, which reveals the launch error. Once the
appropriate maneuver has been computed on the ground, it
takes only a matter of seconds to communicate the maneuver
information to the spacecraft.
Accuracy: We want to compute maneuvers at least as ac-

curately as they can be implemented, given the accuracy to
which the spacecraft’s position and velocity can be mea-
sured. For Genesis, the measurement accuracy is about 1 km
for position and about 0:01 m=s for velocity. For all of our
computations, the integration accuracy was well within these
measurement limits.
Launch errors and sensitivity analysis. The staggered op-

timization procedure is applied for all values of TCM1min
and �v0 in the regime of interest. In a 6rst experiment, we in-
vestigate the possibility of correcting for errors in the launch
velocity using at most two maneuvers (n= 2). The surface

Table 1
HOI problem. Optimal costs (C2 in m=s) for di7erent launch velocity perturbations and delays in TCM1 for n = 2

�v0 TCM1 (days)

(m=s) 1 2 3 4 5

−7 64.8086 76.0845 88.4296 99.6005 109.9305
−6 54.0461 67.0226 77.7832 86.8630 95.8202
−5 47.1839 57.9451 66.6277 74.4544 81.8284
−4 40.2710 48.8619 55.8274 62.0412 67.9439
−3 33.4476 39.8919 45.0290 49.6804 54.1350
−2 26.6811 30.9617 34.3489 37.3922 40.3945
−1 19.9881 22.2715 23.7848 25.2468 26.6662
0 13.4831 13.3530 13.4606 13.3465 13.2919
1 23.1900 21.9242 23.2003 24.4154 25.5136
2 26.2928 30.2773 33.3203 35.9203 38.3337
3 34.6338 38.8496 43.5486 47.7200 51.6085
4 41.4230 47.5266 53.9557 62.3780 65.1411
5 45.9268 56.2245 64.4292 75.0188 81.4325
6 53.9004 64.9741 76.6978 83.8795 95.2313
7 61.4084 75.9169 85.4875 98.4197 106.0411

Fig. 6. HOI problem. InPuence of TCM1min and �v0 on the halo orbit
insertion time (THOI in days) for n = 2.

of optimal cost (C2 in m=s) as a function of these two pa-
rameters is presented in Fig. 5. Numerical values are given
in Table 1.
Except for the cases in which there is no error in the launch

velocity (and for which the 6nal optimal transfer trajectories
have only one maneuver at HOI), the 6rst correction maneu-
ver is always on the prescribed lower bound TCM1min. The
evolution of the time at which the halo insertion maneuver
takes place as a function of the two parameters considered
is shown in Fig. 6.
Recalling that the nominal transfer trajectory has THOI =

110:2 days, it follows that, for all cases investigated, halo
orbit insertion takes place at most 18.6 days earlier or 28.3
days later than in the nominal case.
Several important observations can be drawn from these

results. First, it can be seen that, for all cases that we in-
vestigated, the optimal costs are well within the 8V budget
allocated for trajectory correction maneuvers (150 m=s for
the Genesis mission). Secondly, as the second plot in Fig. 5
shows, the cost function surface is very close to being lin-
ear with respect to both TCM1min time and launch velocity



R. Serban et al. / Automatica 38 (2002) 571–583 579

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7
10

20

30

40

50

60

70

80

90

Perturbation in initial velocity (m/s)
1 2 3 4 5

10

20

30

40

50

60

70

80

90

Delay in first maneuver (days)

O
pt

im
al

 c
os

t C
2 

 (
m

/s
)

O
pt

im
al

 c
os

t C
2 

 (
m

/s
)

Fig. 7. HOI problem. Sensitivity of the optimal solution for n=2. Circles
correspond to optimization results. Line segments are predictions based on
sensitivity computations. The left 6gure was obtained with TCM1min = 3
days and shows the sensitivity of the optimal solution with respect to �v0.
The right 6gure was obtained with �v0 = 3 m=s and shows the sensitivity
of the optimal solution with respect to TCM1min.

error. This suggests that 6rst order derivative information,
as obtained from sensitivity analysis of the optimal solution
(Section 2.2), provides a very good approximation to the
surface. For a few points on the cost function surface, we
present tangents obtained from sensitivity data in Fig. 7.
Finally, the halo orbit insertion time is always close enough
to that of the nominal trajectory so as to not a7ect either
the collection of the solar wind or the rest of the mission
(mainly the duration for which the spacecraft evolves on the
halo orbit before initiation of the return trajectory).
In a second set of numerical experiments, we allow ini-

tially for as many as n=4 maneuvers. This additional degree
of freedom in the optimization further reduces the optimal
cost function, as data in Table 2 shows.
The corresponding cost function surface is presented in

Fig. 8. It is interesting to note that all optimal transfer tra-
jectories have Vn = 2 maneuvers for negative errors in the
launch velocity, Vn=1 maneuver if there is no error, and Vn=3

Table 2
HOI problem. Optimal costs (C2 in m=s) for di7erent launch velocity perturbations and delays in 6rst trajectory correction maneuver for the best case
over n = 2; 3; 4

�v0 TCM1 (days)

(m=s) 1 2 3 4 5

−7 61.0946 76.0852 88.4295 99.3123 109.9174
−6 54.0461 67.0212 77.7832 86.8994 95.8202
−5 47.1389 57.9277 66.6277 74.4513 81.8572
−4 40.2710 48.8619 55.7984 62.0398 67.9438
−3 33.3664 39.8919 45.0290 49.6804 54.1357
−2 26.6720 30.9617 34.3489 37.3911 40.3945
−1 19.9674 22.1091 23.7848 25.2640 26.6618
0 13.4598 13.2902 13.4428 13.2907 13.2919
1 19.8257 21.9026 23.2005 24.4149 25.4359
2 26.2933 30.2773 33.3077 35.9203 38.3337
3 32.8151 38.8496 43.5486 47.7200 51.6085
4 39.3646 47.5279 53.9557 59.7078 65.1117
5 45.9127 56.2333 64.4292 71.7790 78.7022
6 52.4968 64.9741 74.9477 83.8795 92.3090
7 59.0967 73.7398 85.4875 95.9822 105.8960

Fig. 8. HOI problem. InPuence of TCM1min and �v0 on the optimal cost
(C2 in m=s). In each case, the best trajectory over n=2; 3; 4 was plotted.

Fig. 9. HOI problem. InPuence of TCM1min and �v0 on the halo orbit
insertion time (THOI in days). In each case, the best trajectory over
n = 2; 3; 4 was plotted.

maneuvers for positive launch velocity errors. As in the
previous case, the time for the 6rst correction maneuver
is always on the prescribed lower bound (i.e., TCM1 =
TCM1min), while the halo orbit insertion time, shown in
Fig. 9, is at most 2.6 days earlier or 21.4 days later than in
the nominal case.
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3.2. Stable manifold orbit insertion (MOI) problem

Obtaining a good initial guess. In the MOI problem the
last nonzero maneuver takes place on the stable manifold
and there is no maneuver to insert onto the halo orbit. This
implies that, in addition to the constraints of Eq. (1b) im-
posing that the 6nal position is on the halo orbit, constraints
must be imposed to match the 6nal spacecraft velocity with
the velocity on the halo orbit. These highly nonlinear con-
straints, together with the fact that a much larger parameter
space is now investigated (we target an entire surface as op-
posed to just a curve) make the optimization problem much
more diJcult than the one corresponding to the HOI case.
The 6rst problem that arises is that the nominal transfer tra-
jectory is not a good enough initial guess to ensure conver-
gence to an optimum. To obtain an appropriate initial guess
we use the following procedure:

(1) We start by selecting an HOI time, THOI. This yields
the position and velocity on the halo orbit.

(2) The above position and velocity are perturbed in the
direction of the stable manifold and the e.o.m. in Eq. (8)
are integrated backwards in time for a selected duration
TS. This yields an MOI point which is now 6xed in
time, position, and velocity.

(3) For a given value of TCM1min and with �v0=0, and using
the nominal transfer trajectory as initial guess, we use
COOPT to 6nd a trajectory that targets this MOI point,
while minimizing C1.

With the resulting trajectory as an initial guess and the
desired value of �v0 we proceed with the staggered opti-
mization presented before to obtain the 6nal optimal trajec-
tory for insertion on the stable manifold. During the three
stages of the optimization procedure, both theMOI point and
the HOI point are free to move (in position, velocity, and
time) on the stable manifold surface and on the halo orbit,
respectively.
The fact that we are using local optimization techniques

implies that the computed optimal trajectories are very sen-
sitive to the choice of the initial guess trajectory. For given
values of the problem parameters (such as initial number of
maneuvers, perturbation in launch velocity, and lower bound
on TCM1) we 6nd optimal trajectories in a neighborhood
of the initial guess trajectory. In other words, computed op-
timal trajectories can be ‘steered’ towards regions of inter-
est by appropriate choices of initial guess trajectories. For
example, taking the launch time to be TL = 0 and the HOI
time (T ∗

HOI) of the nominal transfer trajectory as a reference
point on the halo orbit, we can investigate a given zone of
the design space by an appropriate choice of the HOI point
of our initial guess trajectory with respect to T ∗

HOI (step 1
of the above procedure). That is, we select a value T0 such
that THOI =T ∗

HOI +T0. The point where the initial guess tra-
jectory inserts onto the stable manifold is then de6ned by
selecting the duration TS for which the equations of mo-
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Fig. 10. MOI Problem. Description of the initial guess computation
procedure.

Table 3
MOI problem. Initial guess trajectories obtained for di7erent choices of
T0 and TS. Times are in nondimensional units

T0 THOI TS TMOI C∗
2

(m=s)

−0:25 1.65916 0.25 1.40916 45.7317
0.50 1.15916 93.2419
0.75 — —

0.00 1.90916 0.25 1.65916 21.7515
0.50 1.40916 45.1291
0.75 1.15916 94.0839
1.00 — —

0.75 2.65916 0.25 2.40916 21.1051
0.50 2.15916 21.4791
0.75 1.90916 24.8072
1.00 1.65916 23.9035
1.25 1.40916 43.2514
1.50 1.15916 86.1323
1.75 — —

1.50 3.40916 0.25 3.15916 15.9145
0.50 2.90916 16.2152
0.75 2.65916 15.6983
1.00 2.40916 17.6370
1.25 2.15916 27.5903
1.50 1.90916 18.9711
1.75 1.65916 19.4283
2.00 1.40916 28.3686
2.25 1.15916 51.8521
2.50 0.90916 105.7831
2.75 0.65916 212.9997
3.00 0.40916 519.7044
3.25 — —

tion are integrated backwards in time (step 2 of the above
procedure). This gives a stable manifold insertion time of
TMOI = THOI − TS = T ∗

HOI + T0 − TS. Next, we use COOPT
to evaluate these various choices for the initial guess trajec-
tories (step 3 of the above procedure). A schematic of this
procedure is shown in Fig. 10.
For di7erent combinations of T0 and TS, Table 3 presents

values of C∗
2 (8v) =

∑n
i=1 ||8vi|| corresponding to the op-

timal initial guess trajectory that targets the resulting MOI
point. Note that, for a given value T0, there exists a value
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Fig. 11. MOI Problem. Optimal transfer trajectory for TCM1min =4 days,
�v0 = −3 m=s, and n = 4. The optimal trajectory has a cost function of
C2 = 49:1817 m=s and Vn = 2 maneuvers. The 6rst maneuver takes place
at TCM1 = 4 days, the second one at TMOI = 112:11 days, while HOI
takes place THOI = 173:25 days after launch.

TS for which we are unable to compute an initial guess tra-
jectory. This occurs since for these values of T0 and TS, the
resulting TMOI is too small for COOPT to 6nd a trajectory
that targets the MOI point from TL = 0.
Regions best suited for MOI insertion: From the data

given in Table 3 we can identify regions of the stable man-
ifold that are best suited for MOI insertion. Examples of
such regions are:

• (Region A) MOI trajectories that insert to the halo orbit
in the same region as the nominal transfer trajectory and
which therefore correspond to initial guess trajectories
with small T0;

• (Region B) MOI trajectories that have HOI points on
the “far side” of the halo orbit and which correspond to
initial guess trajectories with halo insertion time around
T ∗
HOI + 1:50 (T0 = 174:27 days).

These choices are con6rmed by the examples from
Wilson, Howell, and Lo (1999). Trajectories in the second
region might, at 6rst glance, appear unsuited for the Genesis
mission as they would decrease the time the spacecraft is
on the halo orbit (recall that design of the return trajectory
dictates the time at which the spacecraft must leave the halo
orbit). However, as the typical MOI trajectory of Fig. 11
shows, all trajectories on the stable manifold asymptotically
wind onto the halo orbit and are thus very close to the halo
orbit for a signi6cant time. This means that collection of
solar wind samples can start much earlier than halo orbit
insertion, therefore providing enough time for all scienti6c
experiments before the spacecraft leaves the halo orbit.
Once we select a region of the stable manifold by select-

ing an appropriate initial guess trajectory, we can perform
the same type of analysis as done for the HOI problem of
Section 3.1. In what follows, we consider the case in which
we correct for perturbations in launch velocity by seeking
optimal MOI trajectories in Region B, that is, on the far
side of the halo from the Earth. For given values of �v0 and
TCM1min, we 6rst compute an MOI initial guess trajectory
with T0=1:50 and TS=0:75 and then use the staggered opti-

Table 4
MOI problem. Optimal costs (C2 in m=s) for di7erent launching velocity
perturbations and delays in TCM1

TCM1min (days) �v0 (m=s) C2 (m=s)

3 −3 45.1427
−4 55.6387
−5 65.9416
−6 76.7144
−7 87.3777

4 −3 49.1817
−4 61.5221
−5 73.4862
−6 85.7667
−7 99.3405

5 −3 53.9072
−4 66.8668
−5 81.1679
−6 94.3630
−7 109.2151

mization procedure described in Section 3 to 6nd an optimal
MOI trajectory in this vicinity.
We present results from such computations in Table 4.

The optimal MOI trajectories are very close (in terms of
their associated cost function C2) to the corresponding HOI
trajectories. This can be understood by recalling that the
nominal transfer trajectory that we use in our experiments
actually inserts onto the halo orbit directly as opposed to the
manifold. To take full advantage of the stable manifold in
correcting for launching errors, one may need to start with a
nominal transfer trajectory that inserts onto the stable man-
ifold. For missions that are designed to have such nominal
transfer trajectories, correction trajectories that also insert
onto the stable manifold are expected to be much more ef-
6cient than those obtained with the current problem formu-
lation.

4. Conclusions and future work

This paper explores new approaches for automated para-
metric studies of optimal trajectory correction maneuvers
for a halo orbit mission. Using the halo orbit insertion ap-
proach, we found optimal recovery trajectories for all the
launch velocity errors and TCM1min considered. The cost
functions (fuel consumption in terms of 8V ) are within the
allocated budget even in the worst case (largest launch ve-
locity error and TCM1min).
Using the stable manifold insertion approach, we obtained

similar results to those found using HOI targeted trajecto-
ries. The failure of the MOI approach to reduce the 8V sig-
ni6cantly may be because the optimization procedure (even
in the HOI targeted case) naturally 6nds trajectories ‘near’
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the stable manifold.Wewill investigate this interesting e7ect
in future work.
The main contribution of dynamical systems theory to the

problem of 6nding optimal recovery trajectories is in the
construction of good initial guess trajectories in sensitive re-
gions which allows the optimizer to home in on the solution.
This aspect of our work will be important in many other fu-
ture mission design problems. Many missions in the future
will require the use of optimal control in the context of low
thrust. The software and methods of this paper can be used
with little change for such problems. In fact, the techniques
of this paper are applicable to a variety of problems. We plan
to investigate these and related issues in future publications.
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