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The design of fuel-efficient trajectories that visit different moons of a planetary system is best handled by breaking

the problem up into multiple three-body problems. This approach, called the patched three-body approach, has

received considerable attention in recent years and has proved to lead to substantial fuel savings compared with the

traditional patched-conic approach. We consider the problem of designing fuel-efficient multimoon orbiter

spacecraft trajectories in the Jupiter–Europa–Ganymede spacecraft system with realistic transfer times. First, fuel-

optimal (i.e., near-zero-fuel) trajectories without the use of any control are determined, but turn out to be infeasible

due to the very long transfer times involved.We thendescribe amethodology that exploits the underlying structure of

the dynamics of the two three-body problems, that is, the Jupiter–Europa spacecraft and Jupiter–Ganymede

spacecraft, using the Hamiltonian structure-preserving Keplerian map approximations derived earlier and small

control inputs in the form of instantaneous�V to get trajectories with times of flight on the order of months rather

than several years. A typical trajectory constructed using the control algorithm can complete the mission in about

10% of the time of flight of an uncontrolled trajectory.

I. Introduction

L OW-ENERGY spacecraft trajectories, such as multimoon
orbiters for the Jupiter system, can be obtained by harnessing

multiple gravity assists by moons in conjunction with ballistic
capture to drastically decrease fuel usage [1–3]. These phenomena
have been explained by applying techniques from dynamical
systems theory to systems of n bodies considered three at a time [4–
8]. One can design trajectories with a predetermined future and past,
in terms of transfer from one Hill’s region to another. Using this
approach, which has been dubbed themultimoon orbiter (MMO) [1],
a scientific spacecraft can orbit several moons for any desired
duration, instead of flybys lasting only seconds. This approach
should work well with existing techniques, enhancing interplanetary
trajectory design capabilities for missions in planet–moon
environments. The approach is quite flexible in the sense that the
spacecraft can be made to respond to unforeseen events and can be
made to revisit any region.

The aim of this paper is to describe a methodology using the
analytically derived Keplerian map [9] to obtain trajectories with a
realistic time of flight (i.e., measured in months instead of years)
using small control inputs in the form of instantaneous �V.

The paper is arranged as follows. We first describe the Keplerian
map, which is the analytical tool used in the process of finding
desired trajectories.We then review the framework of breaking down
the multimoon problem into two three-body problems and describe a
method of finding zero-fuel trajectories that go from one moon to the
other. Using this framework, we then describe the methodology for
generating low-energy trajectories that can be completed in a
reasonable time using small control inputs. We also discuss the
tradeoff between fuel consumption and time offlight for the family of
trajectories obtained using this method.

II. Keplerian Map for Evolution Under
Natural Dynamics of the Planar Circular

Restricted Three-Body Problem

Each map, which we call the Keplerian map, is an update map for
the angle of periapse! in the rotating frame andKeplerian energyK,
�!n; Kn�7!�!n�1; Kn�1�. The map has the form

!n�1
Kn�1

� �
� !n � 2�f�2�Kn � �f�!n;CJ; �K��g�3=2

Kn � �f�!n;CJ; �K�

� �
(1)

that is, a map of the cylinder A� S1 �R onto itself. This two-
dimensional symplectic twist map is an approximation of a Poincaré
map of the planar circular restricted three-body problem (PCR3BP),
in which the surface of section is at periapsis in the space of orbital
elements. For this reason, Eq. (1) could be considered a periapse
map. The map models a spacecraft on a near-Keplerian orbit about a
central body of unit mass, where the spacecraft is perturbed by a
smaller body of mass �	 1 on a circular orbit. The map is valid
when the spacecraft is assumed to have a periapse distance larger
than the perturber’s circular orbit. The interaction of the spacecraft
with the perturber is modeled as an impulsive kick at periapsis
passage, encapsulated in the kick function f; see Fig. 1a, in which

��;CJ; �K� are considered bifurcation parameters. Here CJ is the
Jacobian constant, which is numerically equal to twice the CR3BP
Hamiltonian in a rotating frame,with an opposite sign by convention.
The kick function fmultiplied by the mass ratio� is the change inK
between two consecutive periapses.

The kick function, derived elsewhere [9] and given in the
Appendix, depends on the following procedure. The greatest
perturbation in orbital elements for a spacecraft in this regime of
motion is assumed to take place at periapse. The spacecraft motion,
during free flight, is mechanically constrained to remain on the
CR3BP energy surface. By assuming CJ 
 3 (close to the Jacobian
constant of the equilibrium pointsL1 andL2), the total change inK is
calculated to the first order in � by integrating the perturbation term
over an unperturbed orbit, from apoapsis to apoapsis, in the case of a
periapse map. The integral is calculated numerically by quadrature,

assuming an average value ofK (called �K) over the region for which
the map is being used. Because of the form of the integrals, the
resulting function f�!� is odd in !. The kick function f�!� can be
computed for a specific value of ! during each evaluation of the
Keplerian map or it can be computed beforehand and stored for all
values of !.
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The map effectively captures the dynamics of the full equations of
motion; namely, the phase space, shown in Fig. 1b, is densely
covered by chains of stable resonant islands, in between which is a
connected chaotic zone. The more physically intuitive semimajor
axis a is plotted for the vertical axis instead of Keplerian energy K,
where a��1=�2K�. The kick function obtained from the map
shows that the biggest kicks are received for a very narrow range of
periapse angle values. If the periapse occurs slightly ahead of the
perturber, the spacecraft gets a negative a kick, and, if the periapse is
slightly behind the perturber, the kick is positive. In Fig. 1a, these
regions are labeled A� and A� respectively.

Using similar methods as already described, we can construct an
apoapse map for the case in which the spacecraft is in the interior
realm of the CR3BP, that is, when its apoapse distance is less than the
circular orbit of the perturber. In the case of an apoapse map, to
receive the positive a kick, the apoapse needs to be slightly ahead of
the perturber (or the periapse needs to be slightly less than �).
Similarly, for a negative a kick, the apoapse needs to be slightly

behind the perturber (or the periapse needs to be slightly more than
��). Both the periapse and apoapse maps will be referred to as
Keplerian maps, and the context should reveal which is being used.

The engineering application envisioned for the map is the design
of low-energy trajectories, specifically between moons in the Jupiter
moon system. Multiple gravity assists are a key physical mechanism
that could be exploited in future scientific missions [1]. For example,
a trajectory sent from Earth to the Jovian system, just grazing the
orbit of the outermost icymoonCallisto, canmigrate using little or no
fuel from orbits with large apoapses to smaller ones. This is shown in
Figs. 1c and 1d in both the phase space and the inertial configuration
space. From orbits slightly larger than Callisto’s, the spacecraft can
be captured into an orbit around the moon. The set of all capture
orbits is a solid cylindrical tube in the phase space, as shown in
Fig. 2a (for details of the tube computation, see, for example, [6]).
Followed backward in time, this solid tube intersects transversely our
Keplerian map, interpreted as a Poincaré surface of section. The
resulting elliptical region, Fig. 2b, is an exit from Jovicentric orbits

Fig. 1 Shown are the following. a)The energy kick function f vs! for typical values of the parameters. b) The connected chaotic sea in the phase space of

the Keplerian map. The semimajor axis a vs the angle of periapsis ! is shown for parameters �� 5:667 � 10�5, CJ � 2:995, and �a��1=�2 �K� � 1:35
appropriate for a spacecraft in the Jupiter–Callisto system. The initial conditions were taken initially in the chaotic sea and followed for 104 iterates, thus
producing the “swiss cheese“ appearance wherein holes corresponding to stable resonant islands reside. c) A phase space trajectory for which the initial
point ismarkedwith a triangle and thefinal pointwith a square. d) The configuration space projections in an inertial frame for this trajectory. Jupiter and
Callisto are shownat their initial positions, andCallisto’s orbit is dashed. The uncontrolled spacecraftmigration is from larger to smaller semimajor axes,
keeping the periapsis direction roughly constant in inertial space. Both the spacecraft and Callisto orbit Jupiter in a counterclockwise sense.
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exterior to Callisto. It is the first backward Poincaré cut of the solid
tube of capture orbits.

The advantage of considering an analytical two-dimensional map
as opposed to full numerical integration of the restricted three-body
equations of motion is that we can apply all the theoretical and
computational machinery applicable to phase space transport in
symplectic twist maps [10]. For example, previous work on twist
maps can be applied, revealing the existence of lanes of fast
migration between orbits of different semimajor axes. These lanes
can be used by a spacecraft sent from Earth to the Jovian system. A
spacecraft whose trajectory just grazes the orbit of the outermost icy
moon Callisto can migrate using little or no fuel from orbits with
large apoapses to smaller ones.

This Keplerian map is an approximate update map for the planar
CR3BP; the approximation arises from fact that the kick function f is
obtained by evaluating integrals while assuming an average value of

K, that is, �K. An exactmap can be obtained, but adds complication. A
first attempt to derive an exact map was made by using the actual
value K instead of an average value and mimicking the original
procedure, that is, integrating the perturbation terms over an
unperturbed orbit. But this resulted in additional derivative terms,
and the resulting map did not turn out to be area preserving, a key
property of the Poincaré map resulting from the full equations of
motion that our map (1) has.

A second,more complicatedway of deriving an exactmap is to use
the method of Hamilton–Jacobi, which has been developed for
general Hamiltonian systems [11]. It involves a canonical change of
variables, which leads to the elimination of perturbation in the time
interval between two consecutive intersections with the Poincaré

section. This procedure transforms the perturbed system into an
integrable one for the interval between two periapes, and the
evolution of transformed variables is then performed. The procedure
involves a inverse canonical change of variables at the end of the
period. The change of variables are given by generating functions
that satisfy the Hamilton–Jacobi equations and can be solved to
arbitrary orders of � by perturbation theory for finite time intervals.
An exact map was derived using this technique, but the
implementation of the map is complicated; namely, we do not get
a simple analytical expression for the map as we do in Eq. (1). The
exact map derived this way, though interesting, does not have the
simplicity we seek for preliminary mission design purposes.

III. Patched Three-Body Approximation

The P3BA discussed by Ross et al. [1] considers the motion of a
spacecraft in the field of n bodies, considered two at a time, for
example, Jupiter and its ith moon, Mi. When the trajectory of a
spacecraft comes close to the orbit of Mi, the perturbation of the
spacecraft’s motion away from purely Keplerian motion about
Jupiter is dominated by Mi. In this situation, we say that the
spacecraft’s motion is well modeled by the Jupiter–Mi spacecraft
restricted three-body problem. For each segment of purely three-
body motion, the invariant manifold tubes ofL1 and L2 bound orbits
(including periodic orbits) lead toward or away from temporary
capture around a moon. The transport mechanism is associated with
the dynamics of homoclinic and heteroclinic tangles, and the study of
these dynamics leads to a general formulation of the transport in
terms of distributions of small phase space regions called lobes [12].

Fig. 2 Shown are the following. a)A spacecraftP inside a tube of gravitational capture orbits will find itself going from an orbit about Jupiter to an orbit
about amoon. The spacecraft is initially inside a tubewhose boundary is the stable invariantmanifold of a periodic orbit aboutL2. The three-dimensional
tube, made up of individual trajectories, is shown as projected onto a configuration space. Also shown is the final intersection of the tube with �e, a
Poincarémap at periapsis in the exterior realm. b) The numerically computed location of an exit on�e is shown,with the samemap parameters as before.
Spacecraft that reach the exitwill subsequently enter the phase space realmaround the perturbingmoon.The vertical axis is theKeplerian energyK of the
instantaneous conic orbit about Jupiter.
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Within the three-body problem, we can take advantage of phase
space structures such as these tubes of capture and escape, as well as
lobes associated with movement between orbital resonances. Both
tubes and lobes, and the dynamics associated with them, are
important for the design of an MMO trajectory. Portions of these
tubes are “carried” by the lobesmediatingmovement between orbital
resonances [6]. Directed movement between orbital resonances is
what allows a spacecraft to achieve large changes in its orbit [1,9].
When the spacecraft’s motion, asmodeled in one three-body system,
reaches an orbit whereby it can switch to another three-body system,
we switch or “patch” the three-body model to the new system. This
initial guess solution is then refined to obtain a trajectory in a more
accurate four-body model. Evidence suggests that these initial
guesses are very good [1], even in the full n-body model.

We now describe a methodology to obtain fuel-optimal
trajectories for the MMO, with the help of the Keplerian map.
During the intermoon transfer, in which one wants to leave a moon
and transfer to another moon closer in to Jupiter, we consider the
transfer in two portions, shown schematically in Fig. 3withM2 as the
inner moon. In the first portion, the transfer determination problem
becomes one of finding an appropriate solution of the Jupiter–M1-
spacecraft problem, which jumps between orbital resonances with
M1, that is, it performs resonant gravity assists to decrease the
perijove [1]. M1’s perturbation is only significant over a small
portion of the spacecraft trajectory near apojove (A in Fig. 3a). The
effect ofM1 is to impart an impulse to the spacecraft, equivalent to a
�V in the absence ofM1.

The perijove is decreased until it has a value close to the orbit of
M2, in fact, close to the orbit of L2 ofM2. We can then assume that a
gravity assist can be achievedwithM2 with an appropriate geometry,
such that M2 becomes the dominant perturber and all subsequent
gravity assists will be withM2 only. When a particular resonance is
reached, the spacecraft can then be ballistically captured by the inner
moon [6]. The arc of the spacecraft’s trajectory at which the
spacecraft’s perturbation switches from being dominated by moon
M1 to being dominated by M2 is called the “switching orbit.” A
rocket burnmaneuver need not be necessary to effect this switch. The
set of possible switching orbits is the “switching region” of the
P3BA; see Fig. 4. It is the analog of the “sphere of influence” concept
used in the patched-conic approximation, which guides a mission
designer regarding when to switch the central body for the model of
the spacecraft’s Keplerian motion. A major difference is that the
switching region is defined in the phase space and not just in the
configuration space.

The task of searching for trajectories that go from near-Ganymede
to near-Europa Jovicentric orbits can be simplified using the
Keplerian maps for the two three-body systems. Given the size of the
periodic orbit around L1 of the Jupiter–Ganymede spacecraft (JGS)
system, we can find its three-body energy. Similarly, given a target
periodic orbit around L2 of the Jupiter–Europa spacecraft (JES)
system, we can find its three-body energy. The small neighborhood
around the point at which the JGS and JES constant three-body
energy contour lines intersect for a given set of energies represents
the switching region. Figure 4 shows the various regions. The search
for probable trajectories is done as follows:

1) We choose a point outside the switching region, lying on the
JGS contour line and close to the switching region. Call it
P���a0; e0�� and time t� 0. Without loss of generality, we assume
the spacecraft is currently at (or close to) apojove. To uniquely define
a trajectory in the four-body system, we need to specify the periapse
angle with regard to the Jupiter–Ganymede (JG) line, !g, and with
regard to the Jupiter–Europa (JE) line, !e, at time t� 0.

2) Nowwewant to choose the periapse angle with regard to the JG
line so that the spacecraft gets a significant kick from Ganymede
toward Europa and ends up in the switching region. Recall from the
previous section that this implies the apoapse should occur with the
periapse slightly more than �� with regard to the JG line. Thus, we
can narrow down the search space for!g at t� 0 to those values, that
is, �0:90� < !g <�0:99�.

3) The primary interaction with Europa occurs at periapse. Ideally,
once the spacecraft gets the previously mentioned kick from
Ganymede, we want it to get a further kick from Europa, toward
Europa, at the following periapse. Again, recall that this implies the
next periapse should occur with periapse slightly greater than zero
with regard to the JE line. If we use only the planar CR3BP equations
for the JGS system (i.e., put the mass of Europa to zero in the four-
body equations) starting with time t� 0, !g selected from the
aforementioned search space, and !e with an initial guess, we can
find the periapse angle !e at the next periapse. Using predictor-
corrector sensitivity analysis, we can refine the initial guess for !e at
t� 0, so that the spacecraft gets a significant kick in the next
periapse. Once we have a range of values of !e at t� 0 that give the
desired phase for the next few periapses, we can use full four-body
equations to determine the actual trajectory in the switching region.
The narrowed-down search space for!e and!g is labeled S!. Recall
that the path of the spacecraft in this region is called the switching
orbit. The first forward iterate at periapse into the JES region is
labeledP1f and the first back iterate at apoapse into the JGS region is
labeled P1b. Note that, if in step 1 the point is chosen exactly at
apoapse, then P1b � P.

4) Now we need to search for the conditions from the set S! that
will lead to a successive decrease in the semimajor axis when iterated
forward and an increase in the semimajor axis value when iterated
back, outside the switching region. This task of iterating in the JES
and JGS regions can be efficiently handled by the Keplerian maps.
For each pair �!g; !e� and a point P�a0; e0� in the switching region,
we iterate forward the corresponding point P1f using the periapse
map, which is valid only in the JES region, and iterate backward the

Fig. 3 Intermoon transfer via resonant gravity assists. a) The orbits of
two Jovian moons are shown as circles. Upon exiting the outer moon’s
(M1) sphere of influence, the spacecraft proceeds under third-body
effects onto an elliptical orbit about Jupiter. The spacecraft gets a gravity
assist from the outer moon when it passes through apojove (denoted as
A). The several flybys exhibit roughly the same spacecraft/moon
geometry because the spacecraft orbit is in near resonance with the
moon’s orbital period and, therefore, must encounter the moon at about
the same point in its orbit each time. Once the spacecraft orbit comes
close to grazing the orbit of the innermoon,M2 (in fact, grazing the orbit
of the L2 point ofM2), the inner moon becomes the dominant perturber.
The spacecraft orbit in which this occurs is denoted as E. b) The
spacecraft now receives gravity assists fromM2 at perijove (P), at which
the near-resonance condition also applies. The spacecraft is then
ballistically captured byM2.

Fig. 4 Schematic trajectory in an a–e plane showing various regions.
Various apoapses/periapses are marked with stars. The straight lines
represent the constant three-body energy contours in the JGS and JES
systems.
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corresponding point P1b using the apoapse map, which is valid only
in the JGS region.

5) Once we have found which values among the set S! will result
in a Jovicentric orbit from near Ganymede to near Europa using the
separate Keplerian maps, we use the full four-body equations to get
actual trajectories. In some cases, because the maps are not exact, the
trajectories and transfer times obtained by the full four-body
equations differ significantly from those obtained from themaps. But
we do get a number of topologically different trajectories by using
maps that are verified by full four-body equations.We can also cycle
through various nearby �a; e� values in the switching region to get
appropriate trajectories.

We show an actual trajectory for the four-body system obtained by
using the method described in Fig. 5. Figure 5a shows the semimajor
axis time history, starting from the exit fromGanymede to capture by
Europa. Figure 5b shows the time history in ana–e plot, clearly
showing that the spacecraft closely follows the constant energy
contours in the two regimes. Figures 5c and 5d show the three-body
energy history of the spacecraft for the Jupiter–Ganymede and
Jupiter–Europa spacecraft systems. The two solutions were patched
together and the switching region, in which the switching of the
dominant perturber occurs in the actual four-body trajectory, is
marked. Clearly, the three-body energy for the JGS system is
constant before the switching region, and the energy for the JES
system is almost constant after the switching region. This separation
of domains of influence of the two perturbers suggests that the
patched three-body approach can be used to obtain good initial
guesses for the actual trajectory, which can in turn be obtained by
using the four-body equations. Hence, we can use two separate
Keplerian maps and patch the solutions appropriately to get initial
guesses.

The trajectory shown in Fig. 5 has a very long transfer time
between the two moons, arising primarily due to the spacecraft
getting stuck in a resonance for a very long time. To overcome this

problem and to design fuel-efficient trajectorieswith realistic transfer
times, we introduce the controlled Keplerian map in the next section.

IV. Method for Designing Trajectories
Using Controlled Map

The controlledKeplerianmapwith a controlu is an updatemap for
the angle of periapse (or apoapse) ! in the rotating frame and
Keplerian energy K, F: A �U! A

F

�
!n

Kn

 !
; un

�
�

!n�1

Kn�1

 !

�
!n � 2�f�2�Kn � �f�!n� � �un�g�3=2

Kn � �f�!n� � �un

 !
(2)

where un 2 U� ��umax; umax�, umax 	 1. The term �� ��CJ; �K� is
approximated as constant. The control strategy employed to get
desired trajectories is twofold. It involves a coarse control part in
which the aim is to get a rapid decrease in the semimajor axis value of
the spacecraft and a fine control part, in which we target specific
regions of interest in the phase space. The reason for this two-
pronged strategy is that the traditional forward–backward approach
[13] works best only if there are no big resonances in between the
starting point and the target region. If the source and target regions lie
in two distant regions separated by slow transport barriers, then the
time before an intersection takes place in this approach is very large.
During that time, the extensions of both the image of the source
segment and the preimage of the target segment grow exponentially
in size, which requires an exponentially increasing number of
discrete points to resolve them. As was mentioned earlier and is
evident from Fig. 1b, the phase space for our problem is populated
with big resonances resulting in a mixed phase space; hence, the

Fig. 5 Trajectory found using the patched three-body approximation: a) semimajor axis time history, b) trajectory in the a–e plane, c) Jacobian
constant for the JGS system, and d) Jacobian constant for the JES system. The trajectory was obtained by integrating the full four-body system.
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forward–backward approach alone would not be sufficient for our
purposes. The coarse control algorithm is based on the fact that large
changes in the semimajor axis (i.e., the action) occur for a very small
range of values of the periapse angle (i.e., the angle); see Fig. 1a. We
adopt the policy of “going with the flow,” until we approach a region
inwhich there is going to be a large change in the semimajor axis. The
outline of the algorithm for a single three-body system is as follows
and is also shown in Fig. 6.

1) At �!n; an�, we iterate forward nmax steps with u� 0, where
nmax holds an inverse relationship with umax. If any of the calculated
iterates lies with the region of high increase, labeledA�, or the region
of high decrease, labeled A�, we calculate the control (Figs. 2a and
2b, respectively). Otherwise, we do not employ any control at the
current iteration step (i.e., un � 0). The size of both these regions
(i.e., A� and A�) is directly proportional to the parameter �!.

2a) Ideally, if one of the future iterates that have been calculated is
inA�, we want to apply control so as tomove the iterate away from it
to the neighboring A� region. If the ith iterate (where i < nmax) is in
A�, we calculate a control sequence over the next i iterates. The
control domain (i.e., ��u; u� � ��u; u� � � � � i times) is coarsely
discretized, and we obtain the iterates using each control sequence
resulting from the discretization. Computations in this paper were
done using a discretization equivalent to�V of 1 m=s, and umax was
taken as equivalent to �V of 5 m=s, in either direction. If there are
some sequences that result in the final iterate being in A�, we choose
the sequence that results in the final iterate being in a small
neighborhood of !opt. Here, !opt is the value of ! that leads to the
maximum decrease in the semimajor axis over one iteration. Then,
using a sensitivity analysis with regard to the control at the last
nonzero iterate in the chosen control sequence, we can adjust its
value so that the resultant !
 !opt; hence, we get the maximum
possible kick in the desired direction.

On the other hand, if there is no such sequence that results in the
final iterate being in A�, we need to move the final periapse angle in
the other direction so as to minimize the increase in a. This local

optimization can be handled by a similar discretization procedure as
already mentioned.

2b) If one of the future iterates is in A�, we again use the
aforementioned discretization of the control domain and choose the
control sequence in the same way as before. A sensitivity analysis is
used to get the final !
 !opt.

3) Once a threshold value ofa is reached, we switch tofine control.
Fine control can be handled by the forward–backward method, in
which the target is the interior of the first intersection of the stable
invariant manifold of a periodic orbit around L2 with the Poincaré
section at periapse.

In Fig. 7, we show a sample trajectory obtained by the
aforementioned algorithm for the Jupiter–Europa spacecraft system.
Note that, as a result of appropriately timed control inputs, the
spacecraft visits the region of high decrease of the semimajor axis.

We can now use this algorithm within the framework of a patched
three-body approximation.We use the controlled apoapsemap to get
the trajectory from near Ganymede to the switching region and then
patch it with another trajectory obtained by using a controlled
periapse map, which leads to capture around Europa. A sample
trajectory for such a case is shown in Fig. 8. The spacecraft completes
this trajectory using 160 m=s of fuel in 1.7 years, which includes
116 revolutions around Jupiter (periapse/apoapse passages). The
time taken for this mission is less than 10% of that taken for the
optimal (zero) fuel trajectory for the same four-body system shown
earlier. Also, this framework is an improvement over the methods
that involve large �V [14] and is a more complete method of
designing trajectories in a four-body system than using some variant
of the traditional patched conics approach [15].

For the sake of completeness, we briefly discuss the tradeoff issues
between the time of flight and fuel (control), because such a tradeoff
is typically discussed in all low-fuel mission design frameworks. The
amount of fuel used for providing�V is expected to be proportional
to the parameter �! up to a saturation point, because this parameter
decides the size of the region in the phase space in which the control
is actively applied, as discussed earlier. More proactive control is
also expected to decrease the time of flight up to a certain limit. In
Fig. 9, we show plots illustrating the time of flight vs fuel tradeoff for
a single three-body system (Jupiter–Europa spacecraft). Several
random initial conditions were taken near a� 1:5, and we show the
plots for two of those conditions that take the most (upper line) and
the least (lower line) amount of iterations to reach the exit region for
three different values of �!. The basic characteristics of this system
are expected to be similar for patched three-body systems.

There are a few implementation issues that need to be discussed.
There is no known optimal way to chose values for the parameters
nmax and �! for the algorithm. We selected nmax � 5 for our
simulations, which provided a reasonable compromise between
computational time and adequate results. With more computational
resources, a higher value can be used to obtain slightly more fuel-
efficient trajectories for a given time of flight (up to the theoretical
optimum).

If a low value of �! is chosen, leading to less proactive control,
then there is a chance of the spacecraft getting stuck in resonance

Fig. 6 The coarse control algorithm.

Fig. 7 Sample trajectory designed using the algorithm: a) plot of the semimajor axis vs periapse angle, and b) time history of the semimajor axis. The
spacecraft repeatedly visits the region of large decrease in the semimajor axis.
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regions for long times. Hence, we used a check in the program,which
will increase the �! for a small duration if such a case is detected.

V. Conclusions

With the help of a family of analytical two-dimensional Poincaré
maps, exact uncontrolled trajectories in the full equations of motion
of the four-body Jupiter–Europa–Ganymede spacecraft system were
found. The maps were used for fast propagation in regimes in which
one of the two perturbers is dominant. Additionally, the maps
reduced the patching region search space, that is, the search for the
region in which the perturbers have comparable influence, given by
critical values of the spacecraft phase with regard to the Jupiter–
Ganymede and Jupiter–Europa systems. The fast propagation done
by the maps on either side of the patching region made preliminary
trajectory generation faster than integrating the full equations of
motion. Many of the trajectories obtained using the algorithm were
topologically similar to thosefinally obtained by full integration (i.e.,
the same number of orbits around Jupiter). The fact that the two three-
body energies were almost constant in the actual four-body trajectory
on either side of the patching region 1) gives us confidence that there
exist actual trajectories that shadow those obtained with the help of
the maps, and 2) implies a separation of regimes of influence of the
perturbers. The relationship between trajectories found via the maps
and trajectories in the full n-body equations of motion needs to be
investigated further to make the qualitative analysis given here more
applicable to actual implementation for mission design.

Taking note of the apparent validity of the patched three-body
approach and the utility of the Keplerian maps, we used those
Keplerian maps to derive approximate controlled trajectories in the
four-body system. Depending upon the chosen value of the
parameter of the algorithm, a compromise can be reached between
the amount of fuel used and the time taken to complete the mission.
We believe that the numbers so obtained should give us a first-order
estimate of fuel required for actual trajectories in full four-body
systems, although this needs to be verified by further investigations.

The use of multiple gravity assists and algorithms such as those
mentioned in this paper are stepping stones toward automating the
design process of various complicated missions envisioned for the
future. This is a significant improvement over the methods that
involve large �V and is a more complete method of designing
trajectories in a four-body system than using the patched conics
approach.

The maps used in both the algorithms are two-dimensional maps,
primarily because the system we considered, the Jupiter–Europa–
Ganymede system, is a very nearly coplanar system; hence, the
dynamics involved for a spacecraft restricted to this plane occur in
2 degrees of freedom. This approach can further be extended to
model a 3-degree-of-freedom motion, resulting in four-dimensional
maps, the two additional dimensions being inclination i and the
longitude of the ascending node �. The use of four-dimensional
maps may uncover some exotic trajectories, although the
implementation will be difficult because the search space will be
larger due to the increase in dimensions.

The algorithm mentioned for finding appropriate control inputs
can also be used in any physical modeling problem in which the
dynamics are similar to those described by this Keplerian map. The
main characteristic of this map is that the kick is significant for only a
small range of values of an angle; hence, by using appropriate control
inputs obtained by this algorithm, a particle can be made to have the
desired large changes in the corresponding action.

Appendix: Mathematical Description of the Kick
Function

The kick function f�!� is given by
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and the relationship between the true anomaly � and time t is obtained
through Kepler’s equation. It appears initially that f is a function of
!, K, and e. But the invariance of the Jacobian constant yields a
relationship between these three variables, implying f�
f�!;K;CJ�, where CJ is a parameter. Furthermore, if we assume

K is constant, at a value �K, then this also becomes a parameter and f
is a function of ! only, that is, f�!� � f�!;CJ; �K�with bothCJ and
�K considered as constant parameters.

Fig. 9 Plot showing the tradeoff between control used and number of
iterations required for two different initial conditions leading to capture
around Europa for the Jupiter–Europa spacecraft planar CR3BP.

Fig. 8 Trajectory for the Jupiter–Europa–Ganymede system using the patched three-body approach: a) time history of the semimajor axis, and
b) semimajor axis vs eccentricity plot with three-body energy contours lines in the background.
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