
AAS 08-193

DESIGNING TRAJECTORIES IN A PLANET-MOON
ENVIRONMENT USING THE CONTROLLED

KEPLERIAN MAP

Piyush Grover∗ and Shane Ross†

Designing fuel efficient tajectories which visit different moons is best han-
dled by breaking up the problem into multiple three-body problems. This
approach, called the patched three-body approach has recieved consider-
able attention in recent years, and has proved to lead to substantial fuel
savings compared to the traditional patched-conic approach. We consider
the problem of designing fuel-efficient multi-moon orbiter trajectories in the
Jupiter-Europa-Ganymede system with realistic transfer times. Previously,
the authors devised a method to get fuel-optimal (i.e. near zero fuel) trajec-
tories in the same system, but the trajectories so obtained are not feasible
due to very long transfer times involved. The aim of the current paper is to
describe a methodology which exploits the underlying structure of the dy-
namics of the two three-body problems, i.e. Jupiter-Europa-Spaceraft and
Jupiter-Ganymede-Spacecraft, using the Hamiltonian structure preserving
Keplerian map approximations derived earlier and using small control in-
puts in the form of instantaneous 4Vs to get substantially lower time-of-
flight than obtained previously.

INTRODUCTION
Low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system can

be obtained by harnessing multiple gravity assists by moons in conjunction with ballistic
capture to drastically decrease fuel usage.1, 2, 3 These phenomena have been explained by
applying techniques from dynamical systems theory to systems of n bodies considered
three at a time.4, 5, 6, 7, 8 One can design trajectories with a predetermined future and past, in
terms of transfer from one Hill’s region to another. Using this approach, which has been
dubbed the “Multi-Moon Orbiter” (MMO), a scientific spacecraft can orbit several moons
for any desired duration, instead of flybys lasting only seconds. This approach should
work well with existing techniques, enhancing interplanetary trajectory design capabilities
for aggressive missions in planet-moon environments. The approach is quite flexible in the
sense that the spacecraft can be made to respond to unforeseen events, and can be made to
revisit any region.

Previously,9 the authors have been able to contruct fuel optimal trajectories in the Jupiter-
Europa-Ganymede system, but the trajectories so obtained are not feasible due to very long
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transfer times involved. The concern of this paper is to describe a methodology using the
analytically derived Keplerian Map10 to obtain trajectories with a substantially lower time-
of-flight, using small control inputs in the form of instantaneous ∆ Vs. The paper is ar-
ranged as follows. We first describe the Kelperian Map, which is the analytical tool used in
the process of finding desired trajectories. We then review the framework of breaking down
the multi-moon problem into 2 3-body problems and finding zero-fuel trajectories that go
from one moon to the other. Using this framework, we then describe the methodology for
generating low energy trajectories that can be completed in reasonable time using small
control inputs. We also discuss the tradeoff between fuel consumption and time-of-flight
for the family of trajectories obtained using the same method.

KEPLERIAN MAP FOR EVOLUTION UNDER NATURAL DYNAM-
ICS OF PCR3BP

Each map, which we call the periapsis Poincaré map (or Keplerian map), is an update
map for the angle of periapse ω in the rotating frame and Keplerian energy K, (ωn, Kn) 7→
(ωn+1, Kn+1). The map has the form(

ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2

Kn + µf(ωn; CJ , K̄)

)
(1)

i.e., a map of the cylinder A = S1 ×R onto itself.

The map models a spacecraft on a near-Keplerian orbit about a central body of unit
mass, where the spacecraft is perturbed by a smaller body of mass µ. The interaction of the
spacecraft with the perturber is modeled as an impulsive kick at periapsis passage, encap-
sulated in the kick function f , see Figure 1(a), where (µ, CJ , K̄) are considered bifurcation
parameters.

The map captures well the dynamics of the full equations of motion; namely, the phase
space, shown in Figure 1(b), is densely covered by chains of stable resonant islands, in
between which is a connected chaotic zone. The more physically intuitive semimajor axis
a is plotted for the vertical axis instead of Keplerian energy K, where a = −1/(2K). The
kick function obtained from the map shows that the biggest kicks are recieved for a very
narrow range of periapse values. If the periapse occurs slightly ahead of the perturber, the
particle is gets a negative a kick, and if the periapse is slightly behind the perturber, the
kick is positive. Using similar methods as above, we can construct an apoapse kick map
for the case when the spacecraft is in the interior realm, i.e. when its semi-major axis is less
than that of the perturber. In case of an apoapse kick map, to recieve the positive a kick,
the apoapse needs to be slightly ahead of the perturber (or the periapse needs to be slightly
less than π). Similarly, for a negative ‘a’ kick, the apoapse needs to be slightly behind the
perturber (or the periapse needs to be slightly more than −π).

The engineering application envisioned for the map is to the design of low energy tra-
jectories, specifically between moons in the Jupiter moon system. Multiple gravity assists
are a key physical mechanism which could be exploited in future scientific missions.1 For
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Figure 1 (a) The energy kick function f vs. ω for typical values of the parame-
ters. (b) The connected chaotic sea in the phase space of the Keplerian map. The
semimajor axis a[= −1/(2K)] vs. the angle of periapsis ω is shown for parameters
µ = 5.667 × 10−5, CJ = 2.995, ā = −1/(2K̄) = 1.35 appropriate for a spacecraft in
the Jupiter-Callisto system. The initial conditions were taken initially in the chaotic
sea and followed for 104 iterates, thus producing the ‘swiss cheese’ appearance where
holes corresponding to stable resonant islands reside. (c) Upper panel: a phase space
trajectory where the initial point is marked with a triangle and the final point with
a square. Lower panel: the configuration space projections in an inertial frame for
this trajectory. Jupiter and Callisto are shown at their initial positions, and Callisto’s
orbit is dashed. The uncontrolled spacecraft migration is from larger to smaller semi-
major axes, keeping the periapsis direction roughly constant in inertial space. Both
the spacecraft and Callisto orbit Jupiter in a counter-clockwise sense.



example, a trajectory sent from Earth to the Jovian system, just grazing the orbit of the out-
ermost icy moon Callisto, can migrate using little or no fuel from orbits with large apoapses
to smaller ones. This is shown in Figure 1(c) in both the phase space and the inertial con-
figuration space. From orbits slightly larger than Callisto’s, the spacecraft can be captured
into an orbit around the moon. The set of all capture orbits is a solid cylindrical tube in the
phase space, as shown in Figure 2(a) (for details of the tube computation, see, e.g., Ref6).
Followed backward in time this solid tube intersects transversally our Keplerian map, in-
terpreted as a Poincaré surface-of-section. The resulting elliptical region, Figure 2(b), is an
exit from jovicentric orbits exterior to Callisto. It is the first backward Poincaré cut of the
solid tube of capture orbits

The advantage of considering an analytical two-dimensional map as opposed to full nu-
merical integration of the restricted three-body equations of motion is that we can apply all
the theoretical and computational machinery applicable to phase space transport in sym-
plectic twist maps.11 For example, previous work on twist maps can be applied, revealing
the existence of lanes of fast migration between orbits of different semimajor axes. These
lanes can be used by a spacecraft sent from Earth to the Jovian system. A spacecraft whose
trajectory just grazes the orbit of the outermost icy moon Callisto can migrate using little
or no fuel from orbits with large apoapses to smaller ones.

PATCHED THREE BODY APPROXIMATION

The P3BA discussed by Ross et al.1 considers the motion of a spacecraft in the field of
n bodies, considered two at a time, e.g., Jupiter and its ith moon, Mi. When the trajectory
of a spacecraft comes close to the orbit of Mi, the perturbation of the spacecraft’s motion
away from purely Keplerian motion about Jupiter is dominated by Mi. In this situation,
we say that the spacecraft’s motion is well modeled by the Jupiter-Mi-spacecraft restricted
three-body problem. Within the three-body problem, we can take advantage of phase space
structures such as tubes of capture and escape, as well as lobes associated with movement
between orbital resonances. Both tubes and lobes, and the dynamics associated with them,
are important for the design of a MMO trajectory. The motion of the spacecraft in the
gravitational field of the three bodies Jupiter, Ganymede, and Europa is approximated by
two segments of purely three body motion in the circular, restricted three-body model. The
trajectory segment in the first three body system, Jupiter-Ganymede-spacecraft, is appropri-
ately patched to the segment in the Jupiter-Europa-spacecraft three-body system. For each
segment of purely three body motion, the invariant manifolds tubes of L1 and L2 bound
orbits (including periodic orbits) lead toward or away from temporary capture around a
moon. Portions of these tubes are “carried” by the lobes mediating movement between
orbital resonances. Directed movement between orbital resonances is what allows a space-
craft to achieve large changes in its orbit. When the spacecraft’s motion, as modeled in one
three-body system, reaches an orbit whereby it can switch to another three-body system,
we switch or “patch” the three-body model to the new system. This initial guess solution is
then refined to obtain a trajectory in a more accurate four-body model. Evidence suggests
that these initial guesses are very good,1 even in the full n-body model.
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Figure 2 (a) A spacecraft P inside a tube of gravitational capture orbits will find
itself going from an orbit about Jupiter to an orbit about a moon. The spacecraft is
initially inside a tube whose boundary is the stable invariant manifold of a periodic
orbit about L2. The three-dimensional tube, made up of individual trajectories, is
shown as projected onto configuration space. Also shown is the final intersection of
the tube with Σe, a Poincaré map at periapsis in the exterior realm. (b) The numer-
ically computed location of an exit on Σe, with the same map parameters as before.
Spacecraft which reach the exit will subsequently enter the phase space realm around
the perturbing moon. The vertical axis is the Keplerian energy K of the instantaneous
conic orbit about Jupiter.

Previously,9the authors described a methodology to obtain fuel optimal trajectories for
the MMO, with the help of the Keplerian Map. During the inter-moon transfer—where one
wants to leave a moon and transfer to another moon, closer in to Jupiter—we consider the
transfer in two portions, shown schematically in Figure 3, with M2 as the inner moon. In
the first portion, the transfer determination problem becomes one of finding an appropriate
solution of the Jupiter-M1-spacecraft problem which jumps between orbital resonances
with M1, i.e., performing resonant GA’s to decrease the perijove.1 M1’s perturbation is
only significant over a small portion of the spacecraft trajectory near apojove (A in Figure



3(a)). The effect of M1 is to impart an impulse to the spacecraft, equivalent to a ∆V in the
absence of M1.

(a) (b)

Figure 3 Inter-moon transfer via resonant gravity assists. (a) The orbits of two
Jovian moons are shown as circles. Upon exiting the outer moon’s (M1’s) sphere-
of-influence, the spacecraft proceeds under third body effects onto an elliptical or-
bit about Jupiter. The spacecraft gets a gravity assist from the outer moon when
it passes through apojove (denoted A). The several flybys exhibit roughly the same
spacecraft/moon geometry because the spacecraft orbit is in near-resonance with the
moon’s orbital period and therefore must encounter the moon at about the same point
in its orbit each time. Once the spacecraft orbit comes close to grazing the orbit of
the inner moon, M2 (in fact, grazing the orbit of M2’s L2 point), the inner moon be-
comes the dominant perturber. The spacecraft orbit where this occurs is denoted E.
(b) The spacecraft now receives gravity assists from M2 at perijove (P ), where the
near-resonance condition also applies. The spacecraft is then ballistically captured by
M2.

The perijove is decreased until it has a value close to M2’s orbit, in fact, close to the
orbit of M2’s L2. We can then assume that a GA can be achieved with M2 with an ap-
propriate geometry such that M2 becomes the dominant perturber and all subsequent GA’s
will be with M2 only. When a particular resonance is reached, the spacecraft can then be
ballistically captured by the inner moon.6 The arc of the spacecraft’s trajectory at which
the spacecraft’s perturbation switches from being dominated by moon M1 to being domi-
nated by M2 is called the “switching orbit.” A rocket burn maneuver need not be necessary
to effect this switch. The set of possible switching orbits is the “switching region” of the
P3BA, see Figure 4 . It is the analogue of the “sphere of influence” concept used in the
patched-conic approximation, which guides a mission designer regarding when to switch
the central body for the model of the spacecraft’s Keplerian motion.
The task of searching for trajectories that go from near-Ganymede to near-Europa Jovi-



Figure 4 Schematic trajectory in a-e plane showing various regions. Various
apoapses/periapses are marked ’x’

centric orbits was simplified using the Keplerian Maps for the two three body systems.
The figures 5,reproduced from that paper, show the validity of the patched three body ap-
proximation. Figure 5a shows the semi-major axis time history, starting from exit from
Ganymede to capture by Europa. Figure 5b shows the time history in an a-e plot, clearly
showing that the particle follows constant energy contours in the two regimes. Figure 5c
and Figure 5d show the three-body energy history of the particle for Jupiter-Ganymede-
Particle and Jupiter-Europa-Particle systems. The time t=0 refers to point where we patch
the two solutions. Clearly, the energy for former system is constant for t≤0 and energy
for the latter system is almost constant for t≥0, further proof that the patched three body
approach can be used to obtain such trajectories.

A METHOD FOR DESIGNING TRAJECTORIES USING CONTROLLED
MAP

The controlled Keplerian map with a control u is an update map for the angle of periapse
(or apoapse) ω in the rotating frame and Keplerian energy K, F : A× U → A

F

((
ωn

Kn

)
, un

)
=

(
ωn+1

Kn+1

)
=

(
ωn − 2π(−2Kn+1)

−3/2

Kn + µf(ωn) + αun

)
(2)

where un ∈ U = [−umax, umax], umax � 1. The term α = α(CJ , K̄) is approximated as
constant. The control strategy employed to get desired trajectories is two-fold: it involves a
coarse control part where the aim is to get rapid decrease in the semi-major axis value of the
spacecraft, and a fine control part, where we target specific regions of interest in the phase
space. The reason for this two-pronged strategy is that the traditiona forward-backward
approach12 works best only if there are no big resonances in betweent the starting point
and the target region. As was mentioned earlier, and is evident from Figure 1b, the phase
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Figure 5 Trajectory found using the Patched Three Body Approximation. a). Semi-
major axis time history b). Trajectory in ’a-e’ plane. c)Jacobi Constant for J-G-P
system d). Jacobi Constant for J-E-P system

space for our problem is populated with big resonances resulting in a mixed phase space,
and hence, the forward-backward approach alone would not be sufficient for our purposes.
The coarse control algorithm is based on the fact that large changes in semi-major axis(i.e.
action) occurs for a very small range of values of the periapse angle(i.e. angle), see Figure
1a. We adopt the policy of ’going with the flow’, until we approach a region where there is
going to be large change in the semi-major axis. The outline of the algorithm for a single
three body system is as follows:
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Figure 6 The coarse control algorithm

1). At (ωn, an), we iterate forward nmax steps with u = 0, where nmax holds an inverse
relationship with umax. If any of the calculated iterates lies with the region of high increase,
labelled A+ or the region of high decrease, labelled A−, we calculate the control(2a and 2b,
respectively).Else, we do not employ any control at the current iteration step (i.e, un = 0).
The size of both these regions(i.e A− and A+) is directly proportional to the parameter δω.

2a). Ideally, if one of the future iterates calculated above is in A+, we want to apply
control so as to move the iterate away from it to the neighboring A− region. If the ith
iterate (where i < nmax) is in A+, we calculate a control sequence over the next i iterates.
The control domain (i.e. [−u, u] × [−u, u] × ...i times) is coarsely discretized and we
obtain the iterates using each control sequence resulting from the discretization. If there
are some sequences that result in the final iterate being in A−, we choose the sequence
which results in the final iterate being in a small neighborhood of ωopt. Here ωopt is the
value of ω which leads to the maximum decrease in semi-major axis over one iteration.
Then, using sensitivity analysis w.r.t the control at the last iterate in the sequence, we can
tweak its value so that resultant ω ≈ ωopt.

On the other hand, if there is no such sequence that results in the final iterate being in
A−, we need to move the final periapse angle in the other direction so as to minimize the
increase in ‘a’. This local optimization can be handled by a similar discretization procedure
as above.

2b). If one of the future iterates is in A−, we again use the discretization of the control
domain, and choose the control sequence in the same way as before. Sensitivity analysis is
used to get final ω ≈ ωopt.

3). Once a threshold value of ‘a’ is reached, we switch to fine-control. Fine control
can be handled by forward-backward method, where the target is the interior of the first
intersection of the stable invariant manifold of a periodic orbit around L2 with the Poincare
section at periapse.
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Figure 7 Sample trajectory designed using the algorithm. (a) Plot of Semi-major
axis Vs Periapse angle. (b) Time history of semi-major axis. The spacecraft repeatedly
visits the region of large decrease in semi-major axis.

In Figure 7 we show a sample trajectory obtained by the above mentioned algorithm, for
the Jupiter-Europa-Spacecraft system. Note that as a result of appropriately timed control
inputs, the spacecraft visits the region of high decrease of semi-major axis.

We can now use this algorithm within the framework of patched three body approxima-
tion. We use the controlled apoapse map to get the trajectory from near Ganymede to the
switching region, and then patch it with another trajectory obtained by using controlled
periapse map which leads to capture around Europa. A sample trajectory for such a case
is shown in Figure 8. The spacecraft completes this trajectory using 160 m/s of fuel in
1.7 years, which included 116 revolutions around Jupiter (periapse/apoapse passages). The
time taken for this mission is less than 10% of that taken for the previously shown optimal
(zero) fuel trajectory for the same four body system.

Tradeoff Between Fuel and Time-of-Flight

We now discuss the tradeoff issues between time-of-flight and fuel(control). The amount
of fuel used for providing ∆Vs is expected to be proportional to the parameter δw upto a
saturation point, since this parameter decides the size of the region in phase space where the
control is actively applied, as discussed previously. More proactive control is also expected
to decrease the time-of-flight upto a certain limit. In Figure 9, we show plots illustrating the
time-of-flight Vs fuel tradeoff for a single three body system (Jupiter-Europa-Spacecraft).
Several random initial conditions were taken near a = 1.5, and we show the plots for two
of those conditions, that take the most and the least amount of iterations to reach the exit
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Figure 8 Trajectory for the Jupiter-Europa-Ganymede system using patched three
body approach. (a) Time history of semi-major axis. b). Semi-major axis Vs eccen-
tricity plot with three-body energy contours lines in the background.

Figure 9 Plot showing the tradeoff between control used and number of iterations
required for two different intial conditions leading to capture around Europa for the
Jupiter-Europa-Spacecraft PCR3BP

region, for three different values of δω. This also gives us an estimate of fuel required for
the each of the three missions. The basic characteristics of this system are expected to be
similar for patched three body systems.



SUMMARY AND CONCLUSION
We have presented a methodology to obtain families of low fuel trajectories with realistic

time-of-flights in the four body problem using the analytical Keplerian map. The controlled
analytical map, used within the framework of patched three body approach, helps in reduc-
ing the search space considerably, as compared to using full equations of motion, and can be
used to obtain appropriate low thrust control inputs that lead to rapid changes in the semi-
major axis. The approach helps us in getting good initial approximations quickly, which
can serve as inputs to the more sophisticated end-to-end trajectory design methods. We can
also get lower order estimates on the control input required to complete the missions in a
given time frame. A possible extension to this work would be to consider continuous low
thrust input model instead of the discrete input model discussed in this paper.
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