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Abstract: We present a model-based approach to estimate the vertical profile of horizontal wind
velocity components using motion perturbations of a multirotor unmanned aircraft system (UAS)
in both hovering and steady ascending flight. The state estimation framework employed for wind
estimation was adapted to a set of closed-loop rigid body models identified for an off-the-shelf
quadrotor. The quadrotor models used for wind estimation were characterized for hovering and
steady ascending flight conditions ranging between 0 and 2 m/s. The closed-loop models were
obtained using system identification algorithms to determine model structures and estimate model
parameters. The wind measurement method was validated experimentally above the Virginia Tech
Kentland Experimental Aircraft Systems Laboratory by comparing quadrotor and independent
sensor measurements from a sonic anemometer and two SoDAR instruments. Comparison
results demonstrated quadrotor wind estimation in close agreement with the independent wind
velocity measurements. However, horizontal wind velocity profiles were difficult to validate using
time-synchronized SoDAR measurements. Analysis of the noise intensity and signal-to-noise ratio of
the SoDARs proved that close-proximity quadrotor operations can corrupt wind measurement from
SoDARs, which has not previously been reported.

Keywords: unmanned aircraft systems; system identification; wind estimation; multi-rotor; drone;
atmospheric science; wind profile; boundary layer meteorology

1. Introduction

Measuring wind velocity near the Earth’s surface is critical to understanding the
surface-atmosphere interactions driving the dynamic state of the atmospheric boundary layer (ABL).
How the ABL evolves with space and time impacts public health and safety [1–6], transport of air
pollutants, pollen and spores [7–10], wind power supply to smart grid systems [11–15], forecast of local
weather [3–6,16], air traffic control at airports [17–20], the spread and management of wildfires [21–24],
and emissions mitigation of greenhouse gases [25–29]. Therefore, accurately characterizing the
dynamic state of the ABL over micro- and mesoscale domains is important [3,16,30,31]. However,
observations of wind velocity at high spatial resolution are difficult to attain due to the cost and limited
mobility of conventional atmospheric sensing technology.

Early work to address the existing gap of atmospheric wind measurements and atmospheric
parameters such as atmospheric pressure, air temperature, and relative humidity (PTH) involved
fixed-wing aircraft for their predictable dynamics, payload capacity, and flight endurance. Approaches
to measuring wind with fixed wing aircraft consist of direct and indirect measurements of wind velocity.
Direct methods have combined inertial and air-relative velocity measurements from GPS and a Pitot
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tube or multi-hole air data system to infer wind velocity using the wind triangle relationship [32,33].
Indirect methods, on the other hand, have exploited GPS and IMU measurements along with
vehicle dynamic models to estimate wind velocity employing state estimation algorithms [34,35].
A comprehensive review of established direct and indirect methods for inferring wind with fixed-wing
aircraft is presented in [36]. However, despite the advantages of operating fixed wing aircraft over
open space, safely maneuvering in urban and complex environments to measure wind speed and PTH
variables remains a challenge.

More recently, multirotor UAS have become popular for direct and indirect measurements of
atmospheric wind and PTH variables within the ABL. Multirotor UAS are mobile, portable, low
cost, and easy to operate over complex and urban environments where it is prohibitively difficult for
conventional atmospheric sensors or fixed-wind aircraft. Direct methods involve measuring wind
velocity from an on-board flow sensor, which include various types of anemometers [37–41] and air
data systems integrated with Pitot tubes or multi-hole probes [42,43]. The choice of sensor for wind
sensing depends on size and power requirement of the sensor, as well as the airframe configuration and
payload capacity of the multirotor UAS. Indirect methods, on the other hand, estimate wind velocity
from wind induced perturbations to the aircraft motion and do not require an onboard airflow sensor.
Conventional model-based approaches to wind estimation have involved kinematic [44,45], point
mass [1,39,46–48], and rigid body models [1,49] of control-augmented quadrotor dynamics, which
characterize how a quadrotor responds to disturbances under feedback stabilization. A comparison
of all three vehicle motion models has demonstrated that both the accuracy and bandwidth of wind
estimates increases with model fidelity [1], which has made model-based wind sensing inside the ABL
more useful and reliable. Especially in scenarios where direct measurements are impossible, i.e., when
the aircraft is very small or when the aircraft is intended for some other purpose and is not equipped
to measure the wind.

To date, model-based wind estimation approaches accounting for vehicle dynamics have mostly
incorporated models appropriate for hovering flight [1,46–50]. Measuring wind velocity only while
hovering limits the efficiency of multirotor aircraft to sample the lower atmosphere. The limited
effectiveness of stationary sampling is largely due to the endurance of multirotor aircraft, which is
typically less than 20 min. Many applications of multirotor UAS wind sensing require atmospheric
sampling over horizontal and vertical distances. Therefore, there is a need to develop wind estimation
algorithms that allow for movement of the multirotor UAS while accurately measuring wind velocity
inside the ABL.

This paper presents the validation of a model-based method for estimating vertical profiles of
the horizontal wind velocity employing wind measurements from a sonic anemometer and SoDAR
(Sound Detection And Ranging) wind profilers. The model-based method that is validated, referred
as the dynamic rigid body wind profiling method or DRBWindPro method, is the extension presented
in [2] of the wind sensing algorithm described in [1] to infer wind velocity using a dynamic rigid body
model for hovering flight. The extension of the wind sensing algorithm incorporates dynamic rigid
body models characterized from system identification for equilibrium flight conditions corresponding
to steady ascent rates ranging from 0 to 2 m/s. The models from system identification were used to
estimate the wind velocity in the vicinity of ground-based in situ and remote atmospheric sensors.
Quadrotor wind estimates and wind measurements from ground-based atmospheric sensors were
then compared to determine the accuracy of the DRBWindPro method.

The organization of this paper is as follows. Section 2 introduces materials and methods
used for model-based wind estimation. This section includes the formulation of aircraft dynamics,
system identification of aircraft models, and the design of a state observer for wind estimation.
The ground-based wind measurement methods are described in Section 3. In Section 4, results from
system identification experiments and comparison of multirotor wind velocity measurements with
ground-based measurements are presented. Section 5 presents a thorough discussion of results from
system identification and from comparing multirotor and ground-based wind measurements. Finally,
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a summary of findings and future work to extend the utility of multirotor UAS for wind sensing are
presented in Section 6.

2. Materials and Methods

2.1. Modeling Framework

The equations of motion for a control-augmented (i.e., feedback-stabilized) quadrotor can be
expressed as a system of first-order, nonlinear, time-invariant ordinary differential equations [1,2]:

ẋ = f (x, u, w(t, x)), x(t0) = x0 (1)

relating the rate of change ẋ of the vehicle’s 12-dimensional state x (i.e., position, attitude, velocity,
and angular velocity), to the state itself, the control inputs u, and wind disturbances w(t, x) varying
over time and space. Moreover, when the aircraft motion is modeled as a small perturbation from
some equilibrium flight condition that corresponds to a constant vertical ascent speed denoted by
Vzeq , the nonlinear dynamics describing the control-augmented motion of the quadrotor is well
approximated by a linear model. As a result, one may infer wind velocity from wind-induced motion
perturbations to a quadrotor employing estimation theory developed for linear systems.

Linear approximations of quadrotor dynamics for wind estimation are considered in this study
for hovering and steady-ascending motions satisfying trim flight conditions. For a quadrotor, trim
flight conditions are satisfied when both translational rates v and rotational rates ω remain constant
over time, i.e., v̇ ≡ 0 and ω̇ ≡ 0. Linear approximations of quadrotor dynamics for hovering and
ascending flight are in the form,

d
dt

x̃ = Ax̃ + Bũ + Γw, (2)

where the vectors x̃ = x − xeq and ũ = u − ueq denote, respectively, small deviations in the state
and input vectors from their steady-state values. Additionally, the state matrix A ∈ R12×12 models
unforced dynamics, the input matrix B ∈ R12×4 characterizes applied forcing, and the disturbance
matrix Γ ∈ R12×3 captures wind-induced perturbations. This model form is used to estimate the
horizontal component wind velocity at different steady motion conditions Vzeq.

2.2. Aircraft System Identification

Aircraft system identification is used to characterize the state and input matrices A and B for
a quadrotor flying in still air conditions (i.e., w(x, t) ≈ 0 m/s). In general, this modeling approach
is a multi-faceted process that relies on input-output flight test data to characterize bare-airframe
or control-augmented dynamic models for an aircraft, depending on application. Figure 1 shows a
schematic of the inputs u and outputs y used to identify bare-airframe and control-augmented models.
A bare-airframe model, assuming actuator dynamics to be negligible, is identified using control signals
from the flight controller µctrl and the vehicle’s measured dynamic response y. A control-augmented
model, alternatively, is identified using the reference signal δr from pilot-induced joystick commands
and the vehicle’s measured dynamic response y. Which model is identified depends on its application.
For wind estimation purposes with an off-the-shelf quadrotor, we use the latter because it does not
require knowledge of the onboard flight controller architecture.
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Figure 1. A schematic of input-output signals for closed-loop and open-loop mappings.

The quadrotor models from system identification are for steady-state equilibrium flight conditions
corresponding to the hovering and steady ascending flight: Vzeq = {0.0, 0.5, 1.0, 1.5, 2.0} m/s.
The identification of each model involved separately determining four sub-models that describe the
plunge, yaw, roll, and pitch dynamics of the quadrotor; see Figure 2. In this process, stepwise regression
was used first to determine the parameter structure of each model. Results from stepwise regression
were then used to estimate model parameters using an output error algorithm. This approach to
system identification was used to minimize the set of parameters being estimated at one time and to
avoid overparameterized models.

Figure 2. Quadrotor plunge, yaw, roll, and pitch modes.

2.2.1. Multirotor UAS Platform

The multirotor UAS used to measure the wind velocity is an off-the-shelf 3DR Solo quadrotor
shown in Figure 3. This aircraft is 25 cm tall with a 46 cm diagonal between motor shafts. Fully
equipped with a lithium polymer battery pack and a 3-axis camera gimbal, the quadrotor weighs
1.5 kg and has a payload capacity of 0.5 kg. The propellers used with the quadrotor are a Master
Airscrew 10× 4.5 propeller set. The quadrotor’s autopilot is a Pixhawk 2.1 Green Cube manufactured
by ProfiCNC. The autopilot operates using open-source Arducopter firmware and is compatible with
MissionPlanner and Solex telemetry software. On board the Pixhawk 2.1 Green Cube are the sensors
listed in Table 1 that are part of the autopilot’s attitude and heading reference system (AHRS).

Table 1. State measurements from autopilot’s AHRS .

State Measurement Sate Variables
Sensor Type and Sampling Rate

Direct Indirect

Position {x, y, z} GPS 5 Hz Barometer 8 Hz
Extended Kalman Filter 8 Hz

Attitude {φ, θ, ψ} — —
Gyroscope 18 Hz

Accelerometer 18 Hz
Extended Kalman Filter 8 Hz

Translational {u, v, w} GPS 5 Hz Accelerometer 18 Hz
Velocity Extended Kalman Filter 8 Hz

Angular Velocity {p, q, r} Gyroscope 18 Hz — —
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(a)

25 cm46 cm 25 cm
Top View

Front View

(b)

Figure 3. (a) The multirotor UAS employed for validation of model-based wind estimation along with
(b) dimensions.

2.2.2. System Identification Flight Testing

System identification flight experiments were conducted outdoors in an open field adjacent
to the Virginia Tech Kentland Experimental Aircraft Systems (KEAS) Laboratory to characterize
quadrotor linear models for wind estimation. The flight experiments were designed to identify
models approximating the quadrotor dynamics about the equilibrium flight conditions corresponding
to Vzeq = {0.0, 0.5, 1.0, 1.5, 2.0}m/s. The experiments required exciting the aircraft from each flight
equilibrium in calm atmospheric conditions (i.e., w(x, t) ≈ 0 m/s) to minimize the impact of exogenous
excitations on the system identification process. The input-output measurements used for system
identification consisted of pilot-induced, sinusoidal joystick commands and the vehicle’s measured
dynamic response.

The system identification experiments were performed in two parts. A first set of experiments
were performed to identify the quadrotor’s hovering flight dynamics. This required exciting from
equilibrium flight the quadrotor’s plunge, yaw, roll and pitch dynamics shown in Figure 2. A second set
of experiments was conducted to identify quadrotor models for constant ascent rates varying between
0.5 and 2 m/s. This involved exciting the quadrotor’s roll and pitch dynamics from equilibrium
flight conditions corresponding to Vzeq > 0. For the latter case, the plunge and yaw dynamics of the
quadrotor were assumed to be well approximated by models identified for hovering flight considering
that the vehicle’s response to wind perturbations in steady-ascending flight is dominated by roll and
pitch motions. Measurements from both sets of system identification experiments were then used to
identify the model structures and parameter estimates approximating the quadrotor’s dynamics for all
five operating conditions specified by Vzeq .

2.2.3. Model Structure Determination

The parameter structure of each model was determined from input-output measurements
employing the stepwise regression algorithm described in [51]. Using this approach, a set of postulated
regressors, χ = {χ1, χ2, · · · , χn} is tested one at a time to determine which ones significantly improve
the fit of the model

z(k) = a0 +
m

∑
i=1

aiχi(k), k = 1, 2, · · · , N (3)
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where z is the quadrotor’s measured response, a0 is the model bias, a = {a0, a1, · · · , am} is the set of
model coefficients associated with m regressors, and N is the sample size of measurements. How well
each model structure fits the observed data as regressors are added or removed is determined using
the F0 statistic and coefficient of determination R2 metrics. The F0 statistic quantifies how much each
regressor contributes to the fit of the model. The coefficient of determination quantifies how well the
model output matches the measured data. Using both metrics, a total of four parameter structures
were identified to characterize the quadrotor’s plunge, yaw, roll, and pitch dynamics.

2.2.4. Parameter Estimation

The model structures determined from step-wise regression were used to initialize the estimation
of model parameters using the output error algorithm described in [51]. The output error algorithm
estimates model parameters using the output of the linear aircraft model described by Equation (2)
in still air conditions and using the N sample points of measured flight data, which are assumed to
be corrupted by sensor noise η. The model and measurements used by the output error method are
summarized below:

d
dt

x̃ = Ax̃ + Bũ, x̃(0) = x0 (4)

y = Cx̃ + Dũ (5)

z(k) = y(k) + η(k) k = 1, 2, · · · , N (6)

where y is the output vector, z is the measurement vector, C is the output matrix, and D is
the feedthrough matrix. This formulation of the output error method assumes that the model
being identified is free of process noise, making numerical propagation of state measurements
possible. Moreover, output error parameter estimation assumes flight measurements to be corrupted
with uncorrelated, zero-mean Gaussian noise η ∈ N (0, RCov) such that the covariance matrix of
measurement noise is diagonal,

Cov(η(k)) = E[η(k)ηT(k)] = RCov

Using this framework, parameter estimates are tuned iteratively while minimizing the cost
function,

J = 1
2

N

∑
i=1

[y(k)− z(k)]T R−1
Cov[y(k)− z(k)] (7)

which is the uncertainty-weighted residual between the model output and observation measurements.
Employing the output error approach, three sets of parameters were estimated and averaged

to characterize quadrotor models for hovering and steady vertical ascent conditions. The quadrotor
models characterized from averaged parameter estimates were validated using a separate flight test
data set collected during system identification experiments.

2.2.5. Model Validation

Linear models approximating steady-flight quadrotor dynamics were validated using
input-output data collected separately during system identification flight experiments. The validation
process for linear models involved comparing model outputs and state measurements corresponding
to pilot-generated excitations using the root-mean-squared error (RMSE) metric:

RMSE =

√√√√ 1
N

N

∑
k=1

(y(k)− z(k))2
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where y is the model output, z is the state measurements, and N is the measurement sample size.
In general, small RMSE values are indicative of accurate parameter estimates. Results from the RMSE
quantification were used to assess the goodness of each model prior to designing a state observer for
wind estimation.

2.3. Observer Synthesis

To synthesize observers for wind velocity estimation, the dynamic rigid body wind sensing
method presented in [1,2] was adapted. Therefore, assuming absolute measurements from the GPS
antenna and AHRS on board the quadrotor to be available, the output equation, as in [1,2], is of
the form

y = I12 x̃ +


03

03

I3

03

w

where output measurements of translational velocity are the summation of both air-relative and wind
velocity (with identity and zero matrices written in short notation, e.g., I12 ∈ R12×12). We assume
in this formulation that sensor noise in the output measurement is negligible, and is therefore not
accounted for. The quadrotor’s output measurement and identified models were then used to formulate
wind-augmented models for the set of operating conditions prescribed by Vzeq.

Wind velocity was estimated using the quadrotor models identified from system identification
in a state observer framework. State observers were developed based on wind-augmented models
corresponding to each of five equilibrium flight conditions. Each wind-augmented model is obtained
by reformulating (2) such that the wind disturbance is part of the wind-augmented state vector:
xA = [x̃T , wT ]T . Here, as in [1,2], variations of wind velocity with respect to time were assumed to
vary slowly relative to the dynamics of the quadrotor such that d

dt w ≈ 0. Therefore, wind-augmented
dynamic models corresponding to each flight equilibrium were defined as follows:

d
dt

xA =

(
A Γ

03×12 03

)
︸ ︷︷ ︸

AA

xA +

(
B

03×4

)
︸ ︷︷ ︸

BA

ũ y =


I3 03 03 03 03

03 I3 03 03 03

03 03 I3 03 I3

03 03 03 I3 03


︸ ︷︷ ︸

CA

xA (8)

where AA ∈ R15×15 is the wind-augmented state matrix, BA ∈ R15×4 is the wind-augmented input
matrix, and CA ∈ R12×15 is the wind-augmented output model.

To verify the observability of the augmented dynamic model, an observability analysis was
conducted to determine if wind estimates can be realized from the model and output measurements.
The system is observable if and only if the observability matrix defined below is column-wise full rank.

O(CA, AA) =


CA

CA AA

...

 =



I3 03 03 03 03

03 I3 03 03 03

03 03 I3 03 I3

03 03 03 I3 03

03 Gw I3 03 I3

03 03 03 I3 03

03 Gg −dwe3eT
3 03 03

03 03 Dmv Dmω 03

...
...

...
...

...
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The analysis shows that the observability matrix is full rank, i.e., rank [O(CA, AA)] = 15.
Therefore, computing a suitable observer gain matrix GO, state estimates of the following observer
will converge to the state of the system (8)

d
dt

x̂A = AA x̂A + BAu + GO (y− CA x̂A) (9)

Because the augmented state vector includes the wind velocity, it follows that the state estimator
(9) provides a convergent estimate of w, provided the underlying assumptions hold (e.g., small
perturbations from the nominal state). Moreover, in the implementation of this framework for steady
vertical-ascent wind estimation, the appropriate set of model parameters was switched manually
offline before processing quadrotor flight measurements.

3. Experimental Validation of Wind Estimates

3.1. Field Experiment Setup

Field experiments were performed at the KEAS Laboratory on June 5th, 2018 from 15:00 to 20:30
EDT to validate horizontal wind velocity estimates from quadrotor hover and vertical steady ascent
conditions: Vzeq = {0, 0.5, 1.0, 1.5, 2.0} m/s. Originally, we intended to validate quadrotor wind
estimates using observations from ground-based sensors and a small solid-state sonic anemometer
mounted on board a separate multirotor UAS. However, we were unable to use the solid-state
anemometer due to a hardware malfunction. Thus, the accuracy of the model-based wind estimates
was examined using measurements from ground-based sensors only.

The ground-based sensors that were used to validate quadrotor estimates of horizontal wind
velocity consist of the sonic anemometer and SoDAR wind profilers found in Figure 4. The Gill
MaxiMet sonic anemometer (SA) shown in Figure 3a and the Remtech PA-0 SoDAR (SR-SoDAR)
shown in Figure 4b were used to validate quadrotor wind estimates at 10 m AGL. Alternatively,
quadrotor profiles of horizontal wind velocity were validated using both the Remtech PA-0 and the
ASC4000i SoDAR (LR-SoDAR) shown in Figure 4c. The configuration of the three sensors relative to
quadrotor operations is shown in Figure 4d. Additionally, the performance envelope of each sensor is
found in Table 2. Using this sensor configuration quadrotor wind velocity estimates were validated
after processing observations from independent sensors.

It is also important to note that our focus during validation experiments laid primarily on
estimating the horizontal component of wind velocity while hovering or profiling due to constraints
driven by science objectives, the flight envelope of the quadrotor, and experiment setup. Constant-rate
vertical profiling with multirotor UAS is already used to measure PTH within the ABL [3,16], and while
it is possible for a multirotor aircraft to measure PTH in descent [31], steady descent rates are only
realizable at very low speeds. Therefore, wind estimation in steady vertical descent may be inefficient
for model-based wind profiling. Moreover, while we are certainly interested in horizontal profiling and,
more generally, wind profiling for arbitrary steady motions, the independent sensors (i.e., SoDARs)
that were used in this study only provide vertical wind profiles. Thus, we were only able to validate
vertical profile measurements.

Table 2. Accuracy specifications for sonic anemometer and SoDAR wind profilers.

Make/Model Descriptor Range
Resolution Accuracy

Spatial Temporal Wind Speed Wind Direction

ASC 4000i LR-SoDAR 30–410 m 5 m 30 s <0.5 m/s above 2 m/s 2◦ above 2 m/s
Remtech PA-0 SR-SoDAR 10–200 m 10 m 300 s <0.2 m/s above 6 m/s 3◦ above 2 m/s

Gill MaxiMet GMX541 SA N/A N/A 1 s 3% at 12 m/s 3◦ at 12 m/s
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(a) Gill MaxiMet (SA) (b) Remtech PA-0 (SR SoDAR) (c) ASC 4000i (LR SoDAR)

(d) Experiment Setup

Figure 4. (a) The Gill MaxiMet sonic anemometer used to measure wind velocity 10 m AGL. (b) The
Remtech PA-0 sensor (SR SoDAR) used to measure wind velocity from 10 to 120 m AGL. (c) The ASC
4000i sensor (LR SoDAR) used to measure wind velocity from 30 to 120 m AGL. (d) The experiment
setup used to validate quadrotor wind estimates from 10 to 120 m AGL.

3.2. Comparison with Ground-Based Observations

We also determine the limitations of wind validation experiments by comparing differences
across ground truth observations at different heights. When observation differences are small, we can
validate quadrotor wind estimates reliably. This is because observations collected at distinct locations
will not be representative of the wind field measured by the quadrotor in high variability conditions.
To compare independent wind observation at different heights, sonic anemometer and LR-SoDAR
observations recorded every 1 and 30 s, respectively, were averaged to match the 300-s sampling
period of the SR-SoDAR. Differences across sensor observation were then characterized using the mean
difference error (MDE) and RMSE metrics at 10, 60 and 110 m AGL. Results from the comparisons
were used to assess the accuracy of quadrotor wind estimates for different flight regimes.
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4. Results

4.1. System Identification

4.1.1. Model Structure Determination

The quadrotor flight dynamic model for hovering and steady ascending flight is decomposed
into four sub-models that describe plunging, yawing, rolling, and pitching motion. Table 3 shows
all four model forms and associated parameters. The plunge model is a system of two first-order
ordinary differential equations parameterized by propulsive and damping parameters. The yaw
model is a system of two first-order ordinary differential equations with rotational damping and
stiffness parameters. Finally, the roll and pitch models are systems of four first-order ordinary
differential equations.

Table 3. The plunge, yaw, roll and pitch model structures of the quadrotor determined from system
identification flight experiments and step-wise regression algorithm presented in [51].

Model Parameter Structure

Plunge
(

ż
ẇ

)
=

(
0 1
0 Zw

)(
z
w

)
+

(
0

Zδ

)
δplunge

Yaw
(

ψ̇
ṙ

)
=

(
0 1

Nψ Nr

)(
ψ
r

)
+

(
0

Nδ

)
δyaw

Roll


ẏ
φ̇
v̇
ṗ

 =


0 0 1 0
0 0 0 1
0 Yφ Yv 0
0 Lφ 0 Lp




y
φ
v
p

+


0
0
0
Lδ

 δroll

Pitch


ẋ
θ̇
u̇
q̇

 =


0 0 1 0
0 0 0 1
0 Xθ Xu 0
0 Mθ 0 Mq




x
θ
u
q

+


0
0
0

Mδ

 δpitch

4.1.2. Parameter Estimation

Three sets of quadrotor model parameters were estimated for each of five equilibrium flight
conditions. Each set of parameters was estimated using the model structures determined from
step-wise regression and the output error algorithm described in Section 2.2. Model parameters for the
plunge, yaw, roll, and pitch model structures were first estimated for hovering flight conditions (i.e.,
v = 0 and ω = 0). Subsequently, roll and pitch model parameters were estimated for constant vertical
ascent flight conditions varying from 0.5 to 2.0 m/s. We assume the plunge and yaw model parameters
to be invariant with vertical ascent rate. Model parameter estimates for each flight equilibrium were
averaged to obtain nominal models for wind estimation. Averaged parameter estimates and standard
error (SE) values for plunge and yaw models are listed in Table 4. Additionally, averaged roll and pitch
model parameters and standard error values are listed for hovering and ascending flight conditions in
Tables 5 and 6, respectively.

Table 4. Nominal plunge and yaw model parameter estimates.

Speed
Plunge Model Yaw Model

Parameter Value SE Units Parameter Value SE Units

0–2 m/s
Zw −0.55 0.28 1/s Nψ −1.71 0.41 1/s2

Zδ −1.71 0.79 1/kg Nr −0.84 0.53 1/s
– – – – Nδ 2.41 1.18 1/(kg ·m2)
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Table 5. Nominal roll model parameter estimates.

Pitch Model 0.0 m/s 0.5 m/s 1.0 m/s 1.5 m/s 2.0 m/s
Units

Parameters Value SE Value SE Value SE Value SE Value SE

Yφ 3.28 0.37 2.91 0.34 4.73 0.87 4.68 0.21 6.62 0.63 m/s2

Yv −0.49 0.68 −0.31 0.04 −0.70 2.33 −0.62 0.14 −1.06 0.25 1/s
Lφ −4.54 4.17 −3.95 0.12 −5.87 2.55 −4.07 0.26 −5.92 0.10 1/s2

Lp −1.09 2.62 −1.15 0.22 −1.62 1.99 −0.82 0.23 −1.80 1.17 1/s
Lδ 4.62 3.55 5.76 0.32 8.52 2.28 6.27 0.31 9.68 0.65 1/(kg ·m2)

Table 6. Nominal pitch model parameter estimates.

Pitch Model 0.0 m/s 0.5 m/s 1.0 m/s 1.5 m/s 2.0 m/s
Units

Parameters Value SE Value SE Value SE Value SE Value SE

Xθ −4.03 0.10 −3.94 0.12 −6.27 0.78 −5.48 0.14 −8.02 0.68 m/s2

Xu −0.71 0.56 −0.61 0.08 −0.80 0.19 −0.67 0.08 −1.24 0.28 1/s
Mθ −6.23 1.67 −5.20 0.11 −8.63 2.64 −4.44 0.23 −7.78 2.69 1/s2

Mq −1.46 0.87 −1.42 0.35 −2.63 0.65 −1.27 0.50 −2.09 0.84 1/s
Mδ 6.61 0.36 6.32 0.28 10.80 1.98 6.81 0.40 10.70 0.64 1/(kg ·m2)

The dependence on vertical ascent rate was also characterized for roll and pitch quadrotor
parameters. Results from this characterization are shown in Figure 5 where roll and pitch model
parameters are plotted as a function of ascent rate. Each parameter estimate appears with absolute
error bars, colored in black, representing the range of estimates obtained from the three experimental
data sets. Orange-colored bars were also included to denote minimum and maximum values across all
five ascent rates. Zeroth- and first-order polynomials were fit to the parameter estimates as a function
of ascent rate. The first-order fit, on the other hand, characterizes the trend in parameter values with
respect to ascent rate. Note that only a subset of parameters exhibit clear trends with respect to ascent
rate. It is possible that these local, small-perturbation models do exhibit high sensitivity to ascent rate,
as suggested by Figure 5. If so, then these results may suggest flight regimes to be avoided when
estimating wind velocity from platform motion; regions of high parameter sensitivity may produce
less accurate wind estimates.

Figure 5. Roll and pitch model parameter estimates corresponding to vertical constant ascent rates
Vzeq = {0.0, 0.5, 1.0, 1.5, 2.0}m/s.

For the aircraft and dynamic model considered here, the parameters vary less at lower ascent rates
(0.5 m/s or less). Thus, one might expect more accurate wind measurements during slower climbs.
It is possible, however, that the variation in parameter estimates is an artifact of the data collection
method for system identification. At higher climb rates, it is more difficult to manually generate the
rich and precisely timed excitation signals needed for model identification. An automated approach to
system identification may improve the repeatability of parameter estimates.
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4.1.3. Model Validation

Models characterized from step-wise regression and output error methods were validated by
comparing the model output and aircraft’s response to an excitation input. Agreement between the
model output and measured response is compared using the RMSE metric discussed in Section 2.2.5.
Results from this validation are shown in Figure 6 for the plunge, yaw, roll, and pitch models
characterized for hovering flight Vzeq = 0. Results from the RMSE assessment for the plunge and
yaw models are shown in Table 7. The RMSE results for the pitch and roll models associated constant
vertical ascent rates ranging between 0 and 2 m/s are also shown in Table 7.

Table 7. System identification validation results for plunge, yaw, roll and pitch models.

Ascent Rate
Plunge Model Yaw Model Roll Model Pitch Model

Par. RMSE Units Par. RMSE Units Par. RMSE Units Par. RMSE Units

0 m/s w 0.44 m/s r 2.59 rad/s v 0.23 m/s u 0.12 m/s
p 0.39 rad/s q 0.19 rad/s

0.5 m/s w 0.44 m/s r 2.59 rad/s v 0.31 m/s u 0.59 m/s
p 0.21 rad/s q 0.31 rad/s

1.0 m/s w 0.44 m/s r 2.59 rad/s v 0.73 m/s u 0.38 m/s
p 0.90 rad/s q 0.37 rad/s

1.5 m/s w 0.44 m/s r 2.59 rad/s v 0.38 m/s u 0.46 m/s
p 0.48 rad/s q 0.51 rad/s

2.0 m/s w 0.44 m/s r 2.59 rad/s v 0.48 m/s u 0.37 m/s
p 0.71 rad/s q 0.28 rad/s
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Figure 6. Validation of the (a) plunge, (b) yaw, (c) roll, and (d) pitch models identified for quadrotor
hovering flight.
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4.2. Comparison of Wind Velocity Measurements

4.2.1. Sonic Anemometer and SoDAR Comparison

The difference across sonic anemometer and SR-SoDAR wind measurements was characterized
from 15:00 to 20:30 EDT to assess the spatial variability of wind at 10 m AGL. Based on 300-second
averaged measurements from the sonic anemometer, prevailing wind conditions during validation
experiments were from the northwest with wind speeds ranging from 1.2 to 4.0 m/s (see Figure 7a).
As shown in Table 8, the MDE and RMSE values of wind speed observations were measured to be
0.7 m/s and 1.0 m/s, respectively. Wind direction MDE and RMSE values were measured as 32◦ and
100◦. Therefore, the difference across the spatial separation of ground truth measurements used to
validate quadrotor wind estimates at 10 m AGL is relatively small.

Table 8. Comparison of wind speed and wind direction observations collected from the sonic
anemometer and SR-SoDAR at 10 m AGL from 15:30 to 20:30 EDT on 5 June 2018.

Sensor Height
Wind Speed Wind Direction

Mean MDE RMSE Mean MDE RMSE

SA 10 m 2.0 m/s 0.7 m/s 1.0 m/s 284◦ 32◦ 100◦SR-SoDAR 2.7 m/s 316◦

4.2.2. SoDAR Comparison

Wind observations from the LR- and SR-SoDAR were compared from 15:00 to 20:30 EDT at 60
and 110 m AGL to assess the spatial variability of wind conditions during quadrotor wind profiling
operations. The prevailing wind conditions as reported by the SR-SoDAR were from northwest with
wind speeds ranging from 2.3 to 7.9 m/s at 60 m AGL and from 2.0 to 8.0 m/s at 110 m AGL. Wind
observations from SR- and LR-SoDAR at 60 and 110 m AGL are shown in Figure 7c,d, respectively.
As reported in Table 9, the maximum MDE and RMSE for wind speed and wind direction were
observed at 110 m AGL. The MDE and RMSE of wind speed observations at 110 m AGL were found to
be −0.9 m/s and 1.4 m/s, respectively. Wind direction MDE and RMSE values, on the other hand,
were measured to be 0◦ and 26◦, respectively. Thus, spatial wind variations were also observed to be
small at higher altitudes.

Table 9. Results from the comparison of SoDAR wind speed and wind direction observations collected
from 15:00 to 20:30 EDT on 5 June 2018.

Sensor Height
Wind Speed Wind Direction

Mean MDE RMSE Mean MDE RMSE

SR-SoDAR 60 m 4.5 m/s −0.9 m/s 1.3 m/s 321◦ −1◦ 25◦LR-SoDAR 3.6 m/s 320◦

SR-SoDAR 110 m 4.8 m/s −0.9 m/s 1.4 m/s 321◦ 0◦ 26◦LR-SoDAR 3.9 m/s 321◦
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Figure 7. Comparison of wind observations collected from the quadrotor and independent sensors at
(a) 10 m AGL, (b) 60 m AGL, and (c) 110 m AGL from 15:00 to 20:30 EDT on 5 June 2018.

4.2.3. Validation of Quadrotor Wind Estimates

Wind estimates from three quadrotor flights hovering at 10 m AGL between 18:00 and 20:30 were
compared to sonic anemometer and SR-SoDAR wind observations. Results from the comparison are
shown in Figure 7a, where the time lapse of each quadrotor flight is denoted with a rose-colored
vertical band. How well quadrotor and ground-based wind measurements compared is reported in
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Table 10 using the MDE metric. The average of wind speed and wind direction of absolute MDE
values of quadrotor wind speed estimates were found to be 0.6 m/s and 0.5 m/s relative to sonic
anemometer and SR-SoDAR observations. The average absolute MDE values for quadrotor wind
direction estimates relative to the sonic anemometer and SR-SoDAR were found to be 14◦ and 10◦

relative to sonic anemometer and SR-SoDAR measurements, as well. Therefore, quadrotor wind
estimates from hovering flights were assessed to have an accuracy comparable to that of conventional
ground-based wind sensors.

Table 10. Comparison of wind speed and wind direction observations from the quadrotor, sonic
anemometer, and SR-SoDAR collected at 10 m AGL between 18:05 to 20:17 EDT on 5 June 2018.

Flight Mode Flight Time Height
Wind Speed Mean Difference Wind Direction Mean Difference

SA SR-SoDAR SA SR-SoDAR

Hovering 18:05–18:15 EDT 10 m 0.9 m/s 0.5 m/s −8◦ −12◦

0.9 m/s 0.1 m/s 12◦ 1◦

Hovering 18:19–18:27 EDT 10 m −0.4 m/s 1.0 m/s 25◦ 17◦

Hovering 20:08–20:17 EDT 10 m −0.1 m/s – −9◦ –

Absolute Mean Difference 0.6 m/s 0.5 m/s 14◦ 10◦

In contrast to assessing the accuracy of wind estimates at 10 m AGL, validating quadrotor
wind profiles ascending vertically at various steady rates proved to be more involved. Results
from a two-part assessment found in Appendix A revealed that quadrotor profiling operations
corrupt ground-truth SoDAR observations. Consequently, making time-synchronized comparisons of
quadrotor and SoDAR wind measurements for validation purposes was not possible for an accurate
assessment of quadrotor wind estimates. To circumvent corrupted wind observations from SoDARs,
quadrotor wind profiles were validated using SoDAR measurements collected before and after
quadrotor operation as well as linearly-interpolated wind profiles.

In total, four sets of quadrotor wind estimates corresponding to Vzeq = {0.5, 1.0, 1.5, 2.0} were
compared to SoDAR wind observations to validate model-based wind profiling. Results from the
comparisons shown in Figure 8c (and in Figure A7a,c,d of Appendix B) demonstrate quadrotor, SoDAR,
and interpolated wind profiles to agree most accurately between 18:40 and 19:01 EDT, when wind
variability across the sampling domain was observed to be the lowest. Good correspondence was also
observed for a subset of quadrotor, SoDAR, and interpolated wind profiles corresponding to a period of
moderate wind variability between 17:31 and 17:55 EDT (see Figure A6a,b in Appendix B). Alternatively,
during periods of high wind variability, comparisons of quadrotor, SoDAR, and interpolated wind
profiles were less consistent as is shown in both Figures 8a and A8. However, in spite of the varied
results for short-period comparisons, Figure 7b,c shows quadrotor and SoDAR observation trends to
match well at 60 and 110 m AGL over a five hour duration of field experiments.

Following the validation of quadrotor wind profiles, a parameter sensitivity was conducted to
assess how the accuracy of wind estimates degrades with parameter variations (see Appendix C).
Model parameters were perturbed by the maximum difference between zeroth- and first-order
parameter characterizations shown in Figure 5. Results from the sensitivity analysis show a strong to
moderate dependence between the accuracy wind estimates and the parameters Yφ, Xθ , Yv, Xu, Lφ,
Mθ , Lp, and Mq. As shown in Figure A9, there was a considerable percent change in wind estimation
RMSE values when this subset of model parameters was perturbed. This outcome suggests that the
accuracy of quadrotor wind estimates will decrease significantly when quadrotor operations deviate
from the operating conditions for which the dynamic models have been characterized.
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Figure 8. Comparison of wind speed and wind direction profiles from SoDAR and the quadrotor
ascending vertically from 10 to 120 m AGL at (a) 0.5 m/s, (b) 1 m/s, (c) 1.5 m/s, and (d) 2 m/s.

5. Discussion

Five models were identified to characterize the control-augmented rigid body dynamics of a
quadrotor for wind estimation in hovering and steady vertical-ascent flight. An observability analysis
confirmed that it is possible to estimate wind velocity using all five models. However, model parameter
estimates were found to fluctuate significantly at higher ascent rates, which can greatly impact wind
estimation error based on the sensitivity analysis presented in Appendix C. Parameter fluctuations,
as mentioned in Section 4.1.2, may be the product of ambient flow and vehicle interactions at specific
flight regimes or related to limitations with system identification experiments. Hence, more in-depth
studies are required to understand the nature of parameter fluctuations at higher rates.

Anomalies were also detected in SoDAR wind measurements coinciding with periods of quadrotor
operations. A two-part evaluation was performed to determine the nature of factors corrupting SoDAR
observations. Examination of GPS position coordinates demonstrated the quadrotor to ascend through
the sampling volume of SoDARs at approximately 60 m AGL. An assessment described in Appendix A
of both the noise intensity and signal-to-noise ratio recorded by each SoDAR revealed a correlation
between corrupted measurements and flight operations that strengthened with altitude. For this
reason, it has been determined that quadrotor operations can significantly impact SoDAR observations
when operating within the SoDAR’s sampling volume. Therefore, experiments involving SoDAR and
multirotor operations in close proximity will have to mitigate for quadrotor noise.

A separate quadrotor with a small sonic anemometer on board was also considered as an
alternative to validate model-based wind estimates. However, due to a hardware malfunction,
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the quadrotor-based wind sensor was not used in validation experiments. Other commercially available
options employing indirect black-box methods for wind sensing, like the ones built into DJI multirotor
aircraft, were not considered to validate model-based wind estimation. These alternatives are largely
proprietary, do not offer wind data storage, and lack accuracy specifications for wind measurements.
Thus, validation experiments were conducted for hovering and steady vertical-ascent flight wind
estimates employing anemometer and SoDAR measurements only.

In spite of challenges with validation experiments, a considerable number of wind estimates were
validated successfully. Wind estimates from the quadrotor hovering at 10 m AGL demonstrated good
agreement between sonic anemometer and SoDAR measurements across all three flights. These results
were found to be comparable to rigid-body model wind estimates reported in [1]. Thus, the rigid-body
model wind estimation algorithms we use for measuring wind in hovering flight performs well across
different quadrotor platforms. Quadrotor wind profile estimates, on the other hand, were validated
using SoDAR observations from 10 to 120 AGL. Comparison results for periods of low wind variability
demonstrate quadrotor wind profile estimates in close agreement with SoDAR wind speed and wind
direction observations. This outcome provides impetus for additional comparisons to assess more
closely the accuracy of model-based wind profiling inside the ABL.

Future work will involve improving validation experiments for a more thorough performance
assessment of quadrotor wind profile estimates. Field experiments for wind estimate validation
will require increasing the spatial separation between SoDARs to ensure quadrotor operations do
not interfere with wind field measurements. Validation of model-based wind estimates will also
incorporate in situ measurements from a sonic anemometer on board a separate quadrotor. Lastly,
because coincident measurements are not feasible, validation experiments will have to take place when
atmospheric conditions are relatively homogeneous and stationary, and significant uniformity of the
wind field sampled by atmospheric sensors is expected.

6. Conclusions

An off-the-shelf quadrotor can be used to obtain model-based wind velocity estimates as long
as the motion data logged on board the autopilot is accessible to the user. However, the accuracy of
wind velocity estimates depends on how well the motion model characterizes the dynamics of the
quadrotor for its operating condition. This paper extends a model based framework exploiting the
rigid body dynamics of a quadrotor for hovering-flight wind estimation to estimate wind velocity
along a vertical path in the lower atmosphere. The extension involved characterizing rigid body
models for equilibrium flight conditions corresponding to each of five steady-ascending rates: Vzeq =

{0.0, 0.5, 1.0, 1.5, 2.0}m/s. Each quadrotor model was characterized employing stepwise regression and
output error parameter estimation. An observability analysis confirmed the feasibility of estimating
wind velocity using the identified model structures. Trends in parameter estimates also suggest that
slower ascent rates may result in more accurate wind estimates. Significant variations in parameter
estimates for higher ascent rates can be the outcome of limitations generating manually the rich and
precisely timed excitation signals needed for model identification. Further studies are required to
investigate this possibility in depth.

Field experiments were conducted to validate quadrotor wind estimates using in-situ and
remote-sensing atmospheric sensors. Results from validation experiments demonstrated quadrotor
wind estimates in hovering flight to be within within small error of sonic anemometer and SoDAR
wind observations. Quadrotor wind profile estimates, on the other hand, were difficult to validate
comprehensively because quadrotor operations affect the reliability of SoDAR wind measurements.
However, in instances when atmospheric conditions were relatively invariant prior to and after
quadrotor operations, quadrotor wind estimates demonstrated very good agreement with wind speed
and wind direction from SoDAR measurements. Overall, this study demonstrates the feasibility of
model-based vertical wind profiling using multirotor UAS in the lower atmosphere.
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Abbreviations

The following abbreviations are used in this manuscript:

ABL Atmospheric boundary layer
AGL Above ground level
AHRS Attitude and heading reference system
Cov Covariance
LR Long range
MDE Mean difference error
Par. Parameter
PTH Pressure, temperature, and relative humidity
RMSE Root mean squared error
SA Sonic Anemometer
SNR Signal-to-noise ratio
SoDAR Sound detection and ranging
SR Short range
UAS Unmanned aircraft system
ctrl Control
ref Reference

Appendix A. A Reliability Study of SoDAR Wind Measurements

A two-part reliability study was conducted to investigate anomalies detected in SoDAR wind
observations during quadrotor operations. The first part of the study looked at the spatial footprint
of quadrotor operations relative to both the position and viewing angle of each SoDAR. The spatial
footprint of quadrotor operations relative to SoDAR wind observations was determined from GPS
position information provided by the quadrotor’s autopilot computer and SoDAR data logs. Quadrotor
and SoDAR position information was used to determine if airframe obstruction of acoustic signals or
propeller downwash corrupted SoDAR wind measurements. The second part of the study examined
both the signal-to-noise-ratio (SNR) and noise intensity corresponding to wind measurements from
each SoDAR prior to and during quadrotor operations. Combined, SNR and noise intensity SoDAR
measurements were used to determine if anomalies in wind observations were attributed to quadrotor
noise during flight operations. Findings from the two-part study can be used to inform best practices
for integrating quadrotor and SoDAR operations for atmospheric wind sensing.

From the two-part reliability study it was determined that quadrotor flight operations impact
SoDAR wind observations when operating in close proximity. Assessment of quadrotor’s flight path
showed the quadrotor profiling through the sampling volumes of both the LR-SoDAR and SR-SoDAR
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60 m AGL during flight operations. A 3-D rendering of this result is shown in Figure A1 where the
ground position of the quadrotor and two SoDARs are plotted on the plot’s x-y plane relative sonic
anemometer and the height of measurements is plotted on the z axis. Additionally, sudden changes in
noise intensity and SNR during quadrotor operations were observed to coincide with corrupted wind
measurements as shown in Figures A2–A5. For example, u and v wind velocity components measured
at 30, 70, and 110 m AGL with the LR-SoDAR show an abrupt increase in magnitude during quadrotor
flights. Observations of u and v wind velocity components at 30, 70, and 110 m AGL were not logged
by the SR-SoDAR during quadrotor operations. Both outcomes hinder the validation of quadrotor
wind estimates at higher altitudes.

North

LR-SoDAR
SR-SoDAR SA

W
est

Figure A1. Spatial footprint of quadrotor operations relative to ground-based atmospheric sensors.
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Figure A2. Cont.
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Figure A2. Noise intensity values for u and v wind velocity observations from the LR-SoDAR at (a)
110 m AGL, (b) 70 m AGL, and (c) 30 m AGL.

17:00 18:00 19:00 20:00

-12

-8

-4

0

4

8

12

17:00 18:00 19:00 20:00

-12

-8

-4

0

4

8

12

17:00 18:00 19:00 20:00

0

10

20

30

40

17:00 18:00 19:00 20:00

0

10

20

30

40

(a)

Figure A3. Cont.
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Figure A3. Singal-to-noise ratios for u and v wind velocity observations from the LR-SoDAR at (a)
110 m AGL, (b) 70 m AGL, and (c) 30 m AGL.
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Figure A4. Noise intensity for u and v wind velocity observations from the SR-SoDAR at (a) 110 m
AGL, (b) 70 m AGL, and (c) 30 m AGL.
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Figure A5. Signal-to-noise ratios for u and v wind velocity observations from the SR-SoDAR at
(a) 110 m AGL, (b) 70 m AGL, and (c) 30 m AGL.

Results from the two-part study demonstrate a strong relationship between quadrotor noise
and anomalies found in SoDAR wind observations. Based on our findings, quadrotor operations
can interfere significantly with ground-based acoustic wind measurements. Precaution should be
exercised when operating multirotor aircraft near SoDARs. Users will have to gauge a safe distance of
separation based on the sampling volume of the SoDAR and the size of the multirotor aircraft used in
flight operations.

Appendix B. Quadrotor Wind Velocity Profiles

Additional quadrotor wind velocity profiles corresponding to constant vertical ascent rates of 1,
1.5 and 2 m/s are shown in Figures A6–A8.
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Figure A6. Comparison of wind speed and wind direction profiles from the SoDAR and quadrotor
ascending vertically at 1.0 m/s between 10 and 120 m AGL from (a) 17:38 to 17:40 EDT, (b) 17:41 to
17:42 EDT, and (c) 17:43 to 17:45 EDT.
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Figure A7. Cont.
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Figure A7. Comparison of wind speed and wind direction profiles from the SoDAR and quadrotor
ascending vertically at 1.5 m/s between 10 and 120 m AGL from (a) 18:45 to 18:46 EDT, (b) 18:47 to
18:48 EDT, (c) 18:49 to 18:51 EDT, and (d) 18:52 to 18:53 EDT.
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Figure A8. Comparison of wind speed and wind direction profiles from the SoDAR and quadrotor
ascending vertically at 2.0 m/s between 10 and 120 m AGL from (a) 19:07 to 19:08 EDT, (b) 19:09 to
19:10 EDT, (c) 19:11 to 19:12 EDT, and (d) 19:13 to 19:14 EDT.



Sensors 2020, 20, 1341 26 of 29

Appendix C. Sensitivity of Wind Estimates to Parameter Variations

Following the validation of quadrotor wind estimates from hovering flight, a sensitivity analysis
was conducted to determine bounds on the accuracy of wind estimates resulting from parameter error.
The nominal model used in the sensitivity analysis is characterized from the zeroth-order parameter
values shown in Figure 5. The decrease in accuracy of wind estimates was quantified perturbing each
zeroth-order parameter value at a time using the percent change of RMSE values as metric

RMSE Percent Change =

∣∣∣∣√∑N
i=1 [w− ŵ]2 −

√
∑N

i=1 [w− ŵ∗]2
∣∣∣∣∣∣∣∣√∑N

i=1 [w− ŵ]2
∣∣∣∣ × 100 (A1)

where w is the true wind measurement, ŵ is the unperturbed quadrotor wind estimates, ŵ∗ is the
perturbed wind estimate, and N is the total number of wind estimates. The perturbation of each
parameter was determined from the maximum difference between the zeroth- and first-order fit, which
is shown in Figure 5 as well. Outcomes from this study are useful to understand the limitations of the
nominal model for the range of steady-ascent rates that were employed for wind estimation.

Results from the sensitivity analysis confirms the accuracy of wind estimates diminishes as
parameter error increases. As is shown in Figure A9, wind estimates degrade most significantly when
when Yφ and Xθ parameter values are varied. Parameter values Yv, Xu, Lφ, Mθ , Lp, and Mq also had
a considerable effect on the accuracy of wind estimates. On the other hand, perturbations of Lδ and
Mδ were observed to have no or insignificant impact. These results, combined, show that the use of a
single model will lead to estimation errors when operating the quadrotor in off-nominal conditions.
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Figure A9. Sensitivity analysis of (a) roll and (b) pitch model parameters.
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