
Comparing Postural Stability Entropy Analyses to Differentiate Fallers

and Non-fallers

PETER C. FINO,1 AHMAD R. MOJDEHI,2 KHALED ADJERID,2 MOHAMMAD HABIBI,2 THURMON E. LOCKHART,3

and SHANE D. ROSS
2

1Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA;
2Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA,

USA; and 3School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State
University, Tempe, AZ 85287, USA

(Received 5 May 2015; accepted 30 September 2015; published online 13 October 2015)

Associate Editor Stefan Duma oversaw the review of this article.

Abstract—The health and financial cost of falls has spurred
research to differentiate the characteristics of fallers and non-
fallers. Postural stability has received much of the attention
with recent studies exploring various measures of entropy.
This study compared the discriminatory ability of several
entropy methods at differentiating two paradigms in the
center-of-pressure of elderly individuals: (1) eyes open (EO)
vs. eyes closed (EC) and (2) fallers (F) vs. non-fallers (NF).
Methods were compared using the area under the curve
(AUC) of the receiver-operating characteristic curves devel-
oped from logistic regression models. Overall, multiscale
entropy (MSE) and composite multiscale entropy
(CompMSE) performed the best with AUCs of 0.71 for
EO/EC and 0.77 for F/NF. When methods were combined
together to maximize the AUC, the entropy classifier had an
AUC of for 0.91 the F/NF comparison. These results suggest
researchers and clinicians attempting to create clinical tests to
identify fallers should consider a combination of every
entropy method when creating a classifying test. Addition-
ally, MSE and CompMSE classifiers using polar coordinate
data outperformed rectangular coordinate data, encouraging
more research into the most appropriate time series for
postural stability entropy analysis.

Keywords—Entropy, RQA, Fallers, Elderly, Sample entropy,

Multiscale entropy, Approximate entropy, Composite mul-

tiscale entropy.

INTRODUCTION

Numerous studies examining the issue of fall risk
have been conducted recently as attention has been

placed on both the health and financial costs of falls in
the elderly and other at-risk groups. Postural stability
and stabilometric measures from quiet standing are
able to identify differences in individuals with a history
of falls (i.e., fallers) from individuals with no history of
falls (i.e., non-fallers).3,5,20,26,27,39 However, the con-
clusions about postural sway as a clinical predictor of
falls are remain unclear.28 Recently, various dynamical
system analyses have been applied to the center-of-
pressure (COP) time-series to help further clarify the
associations between quiet standing and fall history.
Within these tools, entropy measures, which quantify
the amount of information contained within the signal
(Shannon entropy, Renyi entropy) and the complexity
and regularity of the signal (approximate entropy,
sample entropy), have shown utility.4,9,10,23

The two forms of entropy currently used to analyze
biomechanical data are those that quantify the amount
of information contained within the signal (state en-
tropy) and those that examine the repetition of pat-
terns within a signal (sequence entropy). The first type
of entropy is derived from Shannon’s information
theory35 and evaluates the repetition of certain states
within a signal. Shannon (ShanEn) and Renyi (Re-
nyEn) entropies are this form and are measures of the
probability of the signal occupying discrete states.
Within COP time-series data, Shannon and Renyi en-
tropies examine the frequency that a COP position (an
x, y vector) is visited throughout the signal without
regarding the path to or from that position.10 In
comparison, the second type, which includes approxi-
mate entropy (ApEn) and its derivatives (sample en-
tropy, multiscale entropy (MSE), composite multiscale
entropy (CompMSE)), examines the frequency of ser-
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ies of values rather than single values. These sequence
entropies evaluate the probability that particular val-
ues occur within a signal given that the sequence pre-
ceding that value is similar to a template sequence.
Thus, while Shannon and Renyi entropies consider the
repetition of instantaneous states, the sequence en-
tropies consider the repetition of paths.

Using sample entropy (SaEn), Borg and Laxåback4

found that the anterior–posterior (AP) COP data was
more complex, as indicated by higher entropy values
representing fewer instances of pattern repetition
within the AP COP data, in fallers compared to non-
fallers during eyes closed quiet standing. Costa et al.9

used a multiscale version of sample entropy known as
MSE and found opposite results; the complexity (i.e.
irregularity of patterns within the data) of the AP COP
data was significantly higher for non-fallers. Ramdani
et al.30 used recurrence quantification analysis entropy
(RQAEn) to differentiate fallers from non-fallers using
the mediolateral (ML) COP signals. In a different
application of these methods, Gao et al.,10 observed a
recovery in postural stability over time in athletes who
sustained a concussion, which often causes short- to
long-term balance impairments,11,12 using the Shannon
and Renyi entropies of the COP time-series. Though
the COP entropy analyses have shown usefulness, the
number of similar entropy algorithms and sometimes
contradictory results can be confusing to researchers
who wish to perform these analyses.

While the difference between state and sequence
entropies is important in selecting the correct algo-
rithm for a particular analysis, multiple sequence en-
tropy algorithms exist which can further complicate
the decision. ApEn was introduced by Pincus29 as a
practical application of the Kolmogorov–Sinai (K–S)
entropy. Nearly all other forms of sequence entropy
follow from ApEn. Unlike K–S entropy, which
requires an infinite (or near-infinite) time-series and
zero signal noise, ApEn can be used with relatively
short data lengths and with signals containing noise.
ApEn utilizes three parameters: the sample length, N,
the tolerance for similitude, r, and the length of the
template vector, m. ApEn is the sum of natural logs of
a conditional probability that a data point vi will be
similar to the template point ui given that the m-di-
mensional preceding vector [vi2m, …, vi21] is similar to
the template vector [ui2m, …, ui21], where similarity is
defined as within ±r for each entry of the m-dimen-
sional vector. Because ApEn involves taking the nat-
ural log of a conditional probability, the algorithm
includes self-matches, v = u. This introduces a bias
towards low ApEn values for shorter time series33

caused by the decrease in the number of vectors
throughout the signal that match the reference vector,
thereby increasing the weight of the self-match.

Therefore, not only does the selection of m and r affect
the outcome, but the data length N carries significant
weight as well.

Sample entropy (SaEn) was developed to reduce the
effects of sample length seen in ApEn by eliminating
self-matches.17 The process is identical to that used by
ApEn, except that the constraint v „ u is imposed.
Complexity values obtained from SaEn and ApEn are
limited to the time scale used in the sampling frequency
of the data acquisition in the experimental set up. MSE
offers another variation on ApEn and SaEn, calcu-
lating either value at a variety of time scales by aver-
aging the points along the time series at various scales
using a coarse-graining technique.8 In the MSE
method with time scale s, the length of the coarse-
grained time series is reduced by the factor of s which
partially insulates MSE from the record length sensi-
tivities of SaEn and ApEn in shorter time series.18

Furthermore, CompMSE uses a moving average pro-
cedure to compute MSE in the time scale s. CompMSE
then takes the mean value of MSE over the time series
to reduce the effect of shortening the time series due to
the scale factor.41

Similar to the previously described entropies,
RQAEn has also been applied to biomechanical and
COP data. Unlike the state and sequence entropies
discussed above, RQAEn is an entropy algorithm
applied to the recurrence plot rather than to the time-
series directly. RQAEn uses ShanEn to determine the
probability of line segment lengths from the recurrence
plot.21,40 Even though ShanEn is used in the analysis,
the recurrence plot is formulated from a reconstructed
state-space often involving time-delayed embedding.30

RQAEn quantifies the probability that nearby state-
space trajectories remain nearby as the signal moves
forward in time. RQAEn is thus similar to the se-
quence entropies described above in that it measures
the repetition of patterns; yet unique in that it mea-
sures the length of time similar patterns persist.

Though all these techniques are called entropy, the
calculations and the interpretation of results are quite
different from method to method. Previous studies
have compared one or more measures against each
other to assess their sensitivity to data length33 and
noise32 but no study has examined all measures side by
side to look at the sensitivity to changes in a large
population. Specifically, no study has examined which
measures may be most sensitive to the COP changes
between fallers and non-fallers. Such a comparison,
across many different forms and types of COP entropy
analyses may be useful to researchers and heath care
professionals in generating an effective fall risk
assessment tool. Additionally, a comparison of two
common sensory feedback conditions (eyes open, eyes
closed) across a wide range of entropy measures can
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serve as a guide to future researchers on any COP
analysis. To address this need, this study sought to
compare the ShanEn, RenyEn, ApEn, SaEn, MSE,
CompMSE, and RQAEn calculated from the COP
data during eyes open and eyes closed quiet standing in
both fallers and non-fallers. The goals of this study
were to compare the discriminatory ability of different
entropy methods to two paradigms (1) eyes open vs.
eyes closed postural stability which are known to elicit
different postural responses19 and (2) fallers and non-
fallers postural stability.

MATERIALS AND METHODS

Participants

Seventy-six elderly individuals, mean age
(SD) = 74.4 (9.0) years, were recruited from the
northern Virginia area for this study as part of the
Northern Virginia Fall Prevention Coalition. One
subject’s data were not analyzed because it was missing
the eyes closed postural stability measurement. Par-
ticipant demographics for the remaining 75 partici-
pants is shown in Table 1. The data was collected as
part of a free Community Fall Risk Screening Event
that involved meetings with medical personnel and
pharmacists, and a series of mobility tasks for the el-
derly at local community centers. Participants were
required to be generally healthy with no history of
musculoskeletal disorders. Exclusion criteria included
cardiovascular problems (e.g. chronic heart failure,
enlarged heart, weakened heart, foot pain associated
with chronic diabetes, etc.), respiratory problems (e.g.
difficulty breathing during normal walking), neuro-
logical problems (e.g. stroke resulting in weakness in
one of both legs, Parkinson’s disease), and muscu-
loskeletal problems (e.g. persistent muscle weakness,
recent ankle injury, routine back/neck pain, etc.). All
participants signed an informed consent form and the
procedure was reviewed and approved by the Virginia
Tech Institutional Review Board.

Experimental Procedure

Participants were asked to stand quietly with the
arms at their sides for 1 min while standing on a force

plate (AMTI, Model # BP400600-2K, Advanced
Mechanical Technology, Inc., Watertown, MA, USA)
with their eyes open (EO). The participants were then
given a short break to sit down before repeating the
procedure with their eyes closed (EC). Other tasks,
which were recorded but not presented here, included a
timed get-up and go task, a 10-m walk task, and a sit-
to-stand task. During the postural stability tasks, the
participants’ stance width was standardized to 6 in.
between the inside of their feet to be consistent with the
recommended standardized foot placement for balance
testing22 and to control for the effect of stance width
variation on postural stability.7,15 The postural stabil-
ity data COP data were collected through the force
plate at 1000 Hz for both the eyes closed and eyes open
conditions for the complete 60-s duration.

Data Analysis

COP data were calculated using the force plate data
and were down-sampled to 100 Hz to reflect the upper
limit for sampling postural stability data.16 Traditional
COP measures of 95% ellipsoidal area, COP velocity,
ML standard deviation (x SD) and AP standard
deviation (y SD) were calculated and compared to the
entropy methods. For all entropies except RenyEn and
ShanEn, non-stationarities in the data were removed
using bivariate empirical mode decomposition,31

removing intrinsic mode functions (IMFs) with fre-
quencies below 1 Hz.9 The full 60 s of data were ana-
lyzed using each of the entropies discussed below. All
analyses were performed in MATLAB (MATLAB and
Statistics Toolbox Release 2014a, The MathWorks,
Inc., Natick, Massachusetts, United States).

Renyi and Shannon Entropy

RenyEn is defined as the sum of the probabilities
that a data point will fall within one of the pre-speci-
fied discrete areas within the overall signal.10 Follow-
ing the procedure described by Gao et al.,10 RenyEn
was calculated using a box size of 5 mm 9 5 mm. The
Renyi order a can be adjusted to increase or decrease
the influence of outliers within the data. In this study, a
was set at 2 to match previous studies which calculated
RenyEn for COP data.10

For data with limited outliers, RenyEn can be
modified to take the form of Shannon entropy. For
calculating ShanEn, the generalized equation for Re-
nyEn is calculated for an order of a fi 1.6 Although
higher order RenyEn can eliminate skew from the less
visited areas, ShanEn can provide information on the
characteristics of the data. For our analysis of ShanEn,
the same window size as that of the RenyEn
(5 mm 9 5 mm) was chosen for consistency. Both

TABLE 1. Mean (SD) demographic data for all participants,
stratified into fallers and non-fallers.

Fallers Non-Fallers

N 7M/23F 9M/36F

Height (cm) 167 (9) 167 (10)

Mass (kg) 76.8 (18.0) 73.9 (15.2)

Falls in past 12 months 2.4 (1.8) 0 (0)
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RenyEn and ShanEn represent the amount of infor-
mation within a signal. Thus, higher RenyEn and
ShanEn values indicate the COP exists more equally
across the various states (boxes). Lower RenyEn and
ShanEn values indicate the COP tends to reside within
some discrete areas more often than others.

Approximate and Sample Entropy

Approximate entropy (ApEn) analyzes the pre-
dictability and regularity of changes in a time-series. A
full description of the procedure was presented by
Pincus.29 Succinctly, ApEn is a conditional probability
measure of the system’s regularity described by

ApEn ðm; r;NÞ ¼ average over i of

log
conditional probability thatjuðjþmÞ � uðiþmÞj � r

given that juðjþ kÞ � uðiþ kÞj � r for k ¼ 0; 1; . . . ;m� 1

� �

ð1Þ

where u is a time series of data, m defines the length of
the compared vectors, r defines the tolerance of the
comparison, and N defines the length of the time series.
Our analysis used N = 6000 (60 s at 100 Hz), m = 3,
and r = 20% of the standard deviation of the COP
values, based on the original values used by Pincus.29

In contrast to previous studies, the COP position
radius, R = �(x2 + y2), with the origin R = 0 at the
centroid of the data, and the position angle,

W = tan21(y/x), (Fig. 1) were used instead of values for
the separate x and y COP coordinates.4,9,30 While using
the x and y coordinates independently can yield infor-
mation about theAP (forward–backward) andML (side
to side) control, the position vector represents the
overall displacement from mean. If the COP trace lies
within an individual’s basin of stability,34,37,38 the radius
R represents the deviation from the center of that basin
towards the unstable edges. Furthermore, changes inW
represent the tendency of the individual at returning
back to the mean COP position (e.g. no change in W
shows a straight path towards or away from the origin,
while changes inWdemonstrates a circuitous route away
from or back to the origin). However, the use of W did
introduce a discontinuity in the data when the bounds of
+por2pwere crossed, as seen in the right half ofFig. 1.
To address this, an additional condition was applied to
the matching criteria in Eq. 1 for all W time-series to
adjust the tolerance r to reflect this discontinuity:

Additional Matching Criteria for W

juðjþmÞ � uðiþmÞj � r OR juðjþmÞ � uðiþmÞj
� ð2p� rÞ: ð2Þ

Sample entropy (SaEn) is a slight modification to
ApEn which eliminates self-matches. Presented in de-
tail by Richman and Moorman,33 SaEn provides a

FIGURE 1. (Left) Diagram of the two time-series (radius R and angle W) used in the analysis. The radius R is calculated for each
point in time as the distance from the mean of the entire COP trace to that point. Similarly, the angle W was calculated for each
point in time using the mean of the time series as the origin. (Right) The one dimensional time-series R (upper right) and W (bottom
right) for one individual during eye’s open quiet standing.
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measure that is less sensitive to the data length N. In
this analysis, SaEn was calculated using the same
parameters m = 3, r = 20% standard deviation that
were used in the ApEn calculation.

Higher ApEn and SaEn values represent more com-
plex signals with less regularity.29 Thus, low entropy
signals have patterns that are more likely to repeat and
repeat for longer durations. Because ApEn and SaEn
are nearly identical calculations, they tend to follow the
same direction; signals with high ApEn will likely have
high SaEn, and vice versa. However, directionality dif-
ferences can occur in signals with low ApEn values. At
low ApEn, self-matches of v = u account for a larger
proportion of pattern matches. Removing those self-
matches can result in greater SaEn compared to ApEn.
For identical signals, different trends between SaEn and
ApEn likely represent a large proportion of self-matches
in the ApEn calculation.

Multiscale and Composite Multiscale Entropy

While ApEn and SaEn examine the regularity of
signals, those methods do not account for the varying
time scales within the data. MSE calculates the SaEn
of a signal over multiple time scales to address multiple
characteristic time scales.8 In this analysis, MSE values
were calculated for 10 time scales (s = 1–10), corre-
sponding to characteristic timescales from 0.04 to
0.4 s, for the COP radius R and angle W. For consis-
tency with SaEn and ApEn methods, the vector length
and tolerance were defined as m = 3 and r = 20% of
the standard deviation. For each data series, com-
plexity indices are computed by calculating the slope of
linear least square fit and the area under the MSE vs.
scale factor curve. The slope represents the change in
entropy across increasing time scales, while the area
represents the cumulative magnitude of entropy of the
signal across multiple time scales. CompMSE is an
extension of MSE where, for each time scale s, there
are s coarse-grained time series.41 As such, the corre-
sponding MSE values are obtained by shifting aver-
aging windows from the data point i to i + s,
consecutively. The same parameters and complexity
indices used for MSE were used for CompMSE. Both
MSE and CompMSE were calculated with the R, W
and x, y time series to compare the results of each
choice of time series. Both MSE and CompMSE tend
to produce very similar results. However, CompMSE
tends to provide better estimates at high scale factors
because the length of the data series is better preserved
than during MSE.

Recurrence Quantification Analysis Entropy

The RQAEn was calculated according to the pro-
cedure outline by Ramdani et al.30 using code from

Hasson et al.14 Rather than use individual x and y
coordinates, the COP radius, R, and angle, W, were
used for RQAEn in order to be consistent across each
method. This study used the same parameters as
Ramdani et al.30 who examined RQAEn of COP data
in elderly fallers and non-fallers. An embedding
dimension of m = 8, a time delay of T = 6, and a
radius of e = 30% of the mean of all distances were
used for this study to be consistent with previous
results.30 To correct for the discontinuity in the W
time-series, single dimension distances within the
reconstructed phase space greater than 2p 2 e, indi-
cating a boundary crossing, were transformed back to
the unbounded distance by subtracting 2p and taking
the absolute value.

Statistical Analysis

Univariate statistics for each entropy measure
(ShanEn, RenyEn, ApEn, SaEn, MSE, CompMSE,
RQAEn) and for traditional COP measures (COP
area, COP velocity, SD) were calculated for EO and
EC conditions and for faller (F) and non-faller (NF)
groups. Fallers were designated as individuals who had
fallen at least 1 time in the past year. Logistic regres-
sion modeled the probability that an individual had
their eyes closed during the measurement using either
one (R or W) or two independent variables/predictors
(R and W). Receiver-operating characteristic (ROC)
curves were created using the logistic regression
probabilities from each regression model. Logistic
regression models were also run using the rectangular
x, y coordinates’ entropy measures and traditional
postural stability measures COP area, COP velocity, x
standard deviation, and y standard deviation as pre-
dictors. The areas under the curve (AUC) for each
ROC curve were compared to determine the predictive
ability of each entropy method at differentiating the
two conditions, EO and EC. To compare the ability of
each method to discriminate F and NF, the process
was repeated using only EC data. Logistic regression
modeled the probability the individual was a faller
based on either one or two predictors, as described
above, and the AUC statistics were compared. An
AUC statistic of 1 indicates perfect performance at
discriminating the two groups, while an AUC close to
zero indicates very poor performance.42 An AUC of
0.5 represents the same performance as classifying by
random chance, such as a fair coin flip. The AUC
represents the probability that a randomly chosen
person from group 1 would have a larger test value
than a randomly chosen person from group 2.42 The
entropy methods which resulted in higher AUC values
represented better classifiers in these data.

FINO et al.1640



Cumulative entropy classifiers were modeled for the
EC/EO and F/NF comparisons using logistic regres-
sion with all 16 R, W based entropy measures as pre-
dictors/independent variables. An optimal
combination was also computed where separate logis-
tic regression models were run for every combinations
of entropy measures, and the model with the highest
AUC was retained as the optimal combination of
predictors for each comparison (EO/EC, F/NF).

RESULTS

Univariate statistics and AUC values for EO and
EC conditions are shown in Table 2. Univariate
statistics and AUC values for fallers and non-fallers
are shown in Table 3.

The cumulative classifiers had AUC’s of 0.796 for
the EO/EC paradigm and 0.908 for the F/NF groups.
The optimal EO/EC classifier had an AUC of 0.802
and consisted of all entropy measures except MSESlope

R, and MSESlope W, ShanEn. The optimal F/NF clas-
sifier had an AUC of 0.911 and consisted of all mea-
sures except ApEn R, ApEn W, CompMSEArea W.

DISCUSSION

In this paper, different entropy techniques, namely
ShanEn, RenyEn, ApEn, SaEn, MSE, CompMSE,
and RQAEn, were compared to evaluate the perfor-
mance of each method at differentiating two different
paradigms: eyes open (EO) vs. eyes closed (EC) and
fallers (F) vs. non-fallers (NF). Using the AUC from
the ROC curves of each entropy measure, CompMSE
and MSE showed the best quality at differentiating
both EO from EC and F from NF, likely because MSE
and CompMSE use multiple timescales where the
other methods were limited to a single timescale of
interest.

While several studies have reported statistical dif-
ferences in various COP entropy measures between
fallers and non-fallers, the clinically relevant question
is whether these entropy calculations are high-quality
discriminators. Though statistical differences between
fallers and non-fallers have been reported using
ApEn,23 MSE,9 and RQAEn,30 the present compar-
ison between methods shows MSE can be a slightly
better classifier than ApEn. Importantly, the entropy
measures outperformed the traditional COP measures
of sway area, velocity, and standard deviation for both

TABLE 2. Means and standard deviations (SD) for each entropy method for EO/EC conditions.

Method Measure EO mean (SD) EC mean (SD) AUC (1-predictor) AUC (2-predictors)

ApEn W 0.20 (0.22) 0.34 (0.24) 0.691 0.674

R 0.71 (0.40) 0.58 (0.30) 0.513

SaEn W 0.52 (0.35) 0.36 (0.24) 0.638 0.660

R 0.62 (0.42) 0.48 (0.31) 0.501

CompMSE W Area 9.67 (2.14) 8.94 (1.92) 0.606 0.628

R Area 6.13 (2.75) 6.27 (2.10) 0.569

W Slope 0.12 (0.04) 0.13 (0.03) 0.604 0.709

R Slope 0.01 (0.04) 0.03 (0.04) 0.709

x Area 7.07 (2.69) 5.95 (1.99) 0.555 0.556

y Area 8.82 (3.06) 8.80 (2.48) 0.520

x Slope 0.02 (0.05) 0.05 (0.04) 0.719 0.720

y Slope 20.01 (0.05) 0.02 (0.04) 0.702

MSE W Area 9.63 (2.16) 8.95 (1.93) 0.595 0.622

R Area 6.12 (2.74) 6.26 (2.10) 0.570

W Slope 0.12 (0.04) 0.13 (0.03) 0.603 0.707

R Slope 0.00 (0.04) 0.03 (0.04) 0.707

x Area 7.06 (2.68) 6.95 (2.00) 0.555 0.556

y Area 8.82 (3.07) 8.79 (2.48) 0.519

x Slope 0.02 (0.05) 0.05 (0.04) 0.723 0.721

y Slope 20.01 (0.05) 0.02 (0.04) 0.705

RQAEn W 2.30 (0.61) 2.42 (0.53) 0.555 0.561

R 3.15 (1.68) 3.55 (1.32) 0.530

ShanEn – 4.76 (1.80) 5.01 (1.51) 0.538 –

RenyEn – 2.18 (0.55) 2.31 (0.66) 0.559 –

COP Area (cm2) – 4.12 (3.99) 5.01 (5.65) 0.549 –

COP Vel (cm s21) – 2.03 (0.74) 2.78 (1.30) 0.691 –

COP SD (mm) x 0.07 (0.03) 0.08 (0.04) 0.598 0.5963

y 0.03 (0.02) 0.04 (0.03) 0.530

AUC statistics are given for each method.
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EO/EC and F/NF comparisons. These results are
particularly relevant to researchers and clinicians who
wish to develop clinical COP tests which can detect
fallers or fall-prone individuals from non-fallers. While
several methods can detect significant differences, the
best individual classifiers are CompMSE and MSE
according to these results.

Notably, every individual measure, including
CompMSE and MSE, produced fair to poor classifi-
cation (AUC< 0.80) results for both EO/EC and F/
NF classifications. However, when multiple measures
were combined, the discriminatory capability of the
optimal classifier exceeded 0.90, an excellent classifier.
Even though every measure was calculated from the
same data and represented the regularity of the signal,
the cumulative combination resulted in an improved
logistic regression model. For researchers and clini-
cians hoping to use nonlinear tools to discriminate
patients or populations, this result suggests multiple
measures of regularity should be calculated and
assessed together, rather than selecting a single entropy
method.

For MSE and CompMSE, the entropy values were
based on the slope of the linear fit and area under the

curve (AUC) of the linear fit of the complexity indices.
While Costa et al.9 used the area under the linear fit,
we found that the slope gave considerably better re-
sults, particularly when assessing the standard rectan-
gular x, y data. Assessing the entropy based on the
slope of the linear fit may therefore be another entropy
method for MSE and CompMSE in lieu of the area
and worthy of further investigation.

Interestingly, while we predicted the discrimination
between EO and EC would be easier than between F
and NF, most individual methods performed better
discriminating fallers from non-fallers. The primary
difference between the EO and EC conditions is the
elimination of visual feedback in the EC condition.
With no visual feedback, the proprioceptive and
vestibular systems are placed under greater demand to
maintain stability. Typically, the interruption or elim-
ination of visual feedback (EC condition) results in
significantly different COP results compared to the EO
condition.19 Conversely, elderly fallers typically expe-
rience a degradation, but not elimination, of multiple
sensory systems2,36 which can be more challenging to
detect given the varying degrees of degradation.
However, previous studies have examined low fre-

TABLE 3. Means and standard deviations (SD) for each entropy method for fallers (F) and non-fallers (NF) using only the EC
condition

Method Measure NF mean (SD) F mean (SD) AUC (1-predictor) AUC (2-predictors)

ApEn W 0.37 (0.23) 0.30 (0.25) 0.590 0.644

R 0.52 (0.24) 0.68 (0.36) 0.633

SaEn W 0.33 (0.23) 0.42 (0.24) 0.650 0.622

R 0.42 (0.25) 0.57 (0.36) 0.622

CompMSE W Area 8.41 (1.83) 9.73 (1.80) 0.713 0.776

R Area 6.74 (2.15) 5.55 (1.82) 0.658

W Slope 0.13 (0.03) 0.13 (0.03) 0.556 0.753

R Slope 0.04 (0.04) 0.01 (0.03) 0.716

x Area 7.29 (1.96) 6.45 (1.97) 0.613 0.620

y Area 8.85 (2.07) 8.72 (3.02) 0.534

x Slope 0.07 (0.04) 0.04 (0.03) 0.736 0.739

y Slope 0.03 (0.04) 0.00 (0.04) 0.731

MSE W Area 8.43 (1.86) 9.72 (1.79) 0.704 0.767

R Area 6.74 (2.15) 5.55 (1.83) 0.658

W Slope 0.13 (0.03) 0.14 (0.03) 0.551 0.757

R Slope 0.04 (0.04) 0.01 (0.03) 0.716

x Area 7.29 (1.96) 6.45 (1.98) 0.613 0.618

y Area 8.85 (2.07) 8.70 (3.02) 0.532

x Slope 0.07 (0.04) 0.04 (0.03) 0.730 0.744

y Slope 0.03 (0.04) 0.00 (0.04) 0.747

RQAEn W 2.54 (0.51) 2.26 (0.53) 0.674 0.700

R 3.68 (1.18) 3.35 (1.50) 0.567

ShanEn – 5.04 (1.61) 4.95 (1.37) 0.539 –

RenyEn – 2.21 (0.52) 2.46 (0.81) 0.596 –

COP Area (cm2) – 4.51 (5.02) 5.77 (6.51) 0.574 –

COP Vel (cm s21) – 2.70 (1.29) 2.91 (1.34) 0.584 –

COP SD (mm) x 0.07 (0.03) 0.09 (0.05) 0.612 0.617

y 0.03 (0.02) 0.04 (0.05) 0.591

AUC statistics are given for each method.
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quency fluctuations in the COP, as opposed to the
relatively high frequencies (2.5–25 Hz) examined here.
It is possible the muscle tension or other factors pro-
duce a difference in sway in these high frequencies.16

Additionally, polar coordinates (R and W) may be
more suited to detecting this sensory degradation
compared to standard x (ML), y (AP) time series. We
found the standard AP, ML COP data (slope) and
polar R, W data performed similarly when differenti-
ating eyes open and eyes closed postural stability.
However, the polar coordinate COP data displayed a
slight superiority when discriminating fallers from
non-fallers using two predictors. The polar data’s
superiority may be indicative of nested correlations
between the AP and ML series which are not consid-
ered in the x, y entropy analyses. Muscle co-contrac-
tion may be a contributing factor. Greater muscle co-
contraction between the tibialis anterior and gastroc-
nemius has been reported in fall-prone elderly com-
pared to healthy elderly,25 and high levels of co-
contraction have also been associated with aging.13,24

These co-contractions may create correlations between
the AP and ML data which standard entropy measures
cannot address, but polar coordinates, constructed
using both AP and ML time series, may retain some of
these correlations. While this analysis only explored
univariate entropy methods, newer entropy analyses
which can consider these multivariate data have been
developed and warrant future investigation.1

In the rectangular coordinate data, complexity
decreased in fallers for all methods, agreeing with
previous studies.9 However, polar coordinates showed
inconsistent results, with increasing complexity in
fallers for SaEn, CompMSE, and MSE W time series,
and decreased complexity for all R entropy measures
except ApEn and SaEn. Because of the inconsistent
trends, it is difficult to interpret the complexity indices
in polar coordinates. Therefore, despite their superior
classification, further research must identify and ex-
plain the consistent changes before polar coordinate
entropy calculations can be recommended, especially
when classifying individuals without a priori knowl-
edge of their condition (e.g. predictive fall risk
screenings).

ShanEn, and RenyEn, performed the worst when
discriminating fallers from non-fallers. In the case of
ShanEn and RenyEn, the regularity of the time-series
(i.e., the repetition of sequences) is not considered at
all. Instead, ShanEn and RenyEn measure the regu-
larity of the state of the signal (i.e. the repetition of
values, not sequences). As state entropies, ShanEn and
RenyEn appear less suited to distinguishing COP
times-series when compared to sequence entropies
(ApEn, SaEn, MSE, CompMSE). While RQAEn does

not consider the regularity of the time-series itself, it
was well-suited to discriminating F from NF, agreeing
with results from Ramdani et al.,30 who found signif-
icant differences between F and NF using RQAEn.

This analysis provides some direction for
researchers wishing to choose an entropy analysis for
COP data. Both MSE and CompMSE showed the best
ability to discriminate fallers from non-fallers sug-
gesting these two methods should be considered first
for future COP analyses. Multivariate entropy analyses
should also be highly considered for COP analyses to
address any correlations between the two data series.
However, the increased quality of the cumulative and
optimal classifiers suggests that each entropy method
should be calculated and considered. Each measure of
entropy appears to have its own utility at differentiat-
ing the postural control of healthy and fall-prone el-
derly. For researchers and clinicians attempting to
create a clinical test to identify fall-prone elderly, a
cumulative approach should be adopted, with each
entropy method included in the decision. Using a
combination of multiple forms of entropy, this study
successfully differentiated fallers and non-fallers with
only 60 s of postural stability data; no other clinical
metrics (e.g., Activities-specific Balance Confidence
score, vision, etc.) were considered. Therefore, each
postural stability entropy measure should be consid-
ered an important predictor in future fall-risk assess-
ments.

This study had two primary limitations. Primarily,
the testing environment of the participants was not
identical, nor completely free of distractions. Being a
field study, the participants were tested in a community
center with noises and other distractions that may have
affected the balance during testing. Though the inter-
study variation tends to be extremely high in studies
reporting fall risk due to methodological variables
(time of day, specific population, definition of fallers,
instrumentation, analyses parameters),30 the relatively
large sample size used in this study removes a limita-
tion of previous work.9 The second limitation was that
only 60 s of postural stability data were collected for
each condition due to the difficulties with testing el-
derly subjects and the possibility of early fatigue. Fu-
ture work should increase the length of data collection
to at least 2 min to provide an adequate record length
for the entropy analysis.10 An additional minor limi-
tation was the standardization of foot width. While the
standardization did eliminate potential confounds of
stance width, it may have placed a small number of
participants in an uncomfortable or unnaturally nar-
row or wide stance. However, this effect was mini-
mized by following the recommended stance width
given by McIlroy and Maki.22
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