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HETEROCLINIC TRANSFER BETWEEN L1 AND L3 IN
EARTH-MOON SYSTEM

Abdullah Braik* and Shane D. Ross†

In this study, we explore the existence of heteroclinic transfers between Lyapunov orbits
around the L1 and L3 points in the Earth-Moon system using the Planar Circular Restricted
Three-Body Problem (PCR3BP) model. While transfers involving L1 and L2 have been
extensively studied, transfers to L3 remain underutilized despite their potential benefits for
long-term observation and low stationkeeping requirements. By computing Lyapunov orbits
and their associated invariant manifolds, Poincaré maps are constructed to identify potential
heteroclinic connections. Using this method, two transfer trajectories were found in each
energy level. Those trajectories differ in their travel time between L1 and L3.

INTRODUCTION

A new era of deep-space exploration and cislunar operations is driving renewed interest in advanced tra-
jectory design. NASA’s Artemis program—with its planned Gateway lunar station—exemplifies the push for
sustained human presence at the Moon and beyond.1 In parallel, mission concepts like the Asteroid Redirect
Mission (ARM) have been proposed to robotically capture a near-Earth asteroid and park it in lunar orbit
for astronaut exploration and technology demonstrations.2 At the same time, strategic interests are expand-
ing beyond geosynchronous orbit: the need for cislunar space domain awareness has prompted studies of
surveillance constellations in the Earth–Moon system to monitor the anticipated surge in spacecraft traffic.3

Together, these developments underscore the importance of efficient transfer trajectory design in multi-body
regimes to enable robust and cost-effective deep-space missions.

Efficient transfers in the Earth-Moon system hinge on exploiting its multi-body dynamical structure. In
contrast to conventional two-body Hohmann transfers, low-energy trajectories leverage the Circular Re-
stricted Three-Body Problem (CR3BP) dynamics to reduce ∆V expense. The Earth–Moon CR3BP hosts
five equilibrium points (L1–L5) whose associated invariant manifolds form a network of pathways for bal-
listic transfers.4 Past missions have validated this approach: for example, the CAPSTONE mission recently
navigated a ballistic lunar transfer that followed natural gravitational contours to achieve lunar capture with
minimal propellant.5 By leveraging such multi-body dynamical routes, mission designers can attain transfers
that would be infeasible or prohibitively costly in a patched two-body context.

Within this framework, heteroclinic transfers represent an especially elegant class of low-energy trajec-
tories. A heteroclinic connection is a trajectory that asymptotically departs one invariant orbit (along that
orbit’s unstable manifold) and approaches another invariant orbit (along the stable manifold of the second
orbit). In essence, the spacecraft “slides” from one libration-point orbit to another with no insertion burn
at the junction.6 This concept has since become a powerful paradigm for designing low-energy pathways
through the coupled gravitational landscape of the CR3BP. By exploiting heteroclinic connections, missions
can access distant or otherwise inaccessible orbits at negligible fuel cost, provided the timing and energy
levels are matched.

To date, most applications of CR3BP transfers in the Earth–Moon system have focused on the L1 and L2

libration point regions. Extensive surveys and mission studies have characterized halo orbits around L1/L2,7
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stationkeeping strategies,8 and transfers between these orbits.9 Notably, NASA’s ARTEMIS mission was
the first to maneuver spacecraft into Earth–Moon L1 and L2 orbits, demonstrating the practical feasibility
of low-energy libration-point transfers.10 In contrast, the Earth–Moon L3 point has received relatively little
attention. Situated on the opposite side of Earth from the Moon, Earth–Moon L3 has not yet been utilized
by any mission, and early trajectory research largely overlooked it in favor of the nearer and more accessible
L1/L2 regions. However, there is a growing recognition that L3’s underexplored location offers unique value
for future operations.

Several factors make a compelling case for renewed focus on Earth–Moon L3. First, dynamical anal-
yses show that L3 is quasi-stable, exhibiting lower unstable eigenvalues compared to L1 and L2. Volta
and Vaughn11 showed that certain periodic orbits around Earth–Moon L3 can remain stable for up to 250
days without control. Second, L3’s remote location and broad vantage point confer strategic advantages for
cislunar situational awareness. A vehicle in an L3 halo orbit is well-positioned for surveillance, offering line-
of-sight views of regions on Earth that are otherwise hidden from ground sensors or L1/L2 assets. Recent
studies have considered Earth–Moon L3 orbits as potential “watchpoints” for monitoring activities in cislu-
nar space, in conjunction with satellites around L4 and L5.12 Another study considers that a constellation of
satellites in L1,L2 and, L3 halo orbits would provide continuous lunar global positioning and navigation ser-
vices, with L3 satellites requiring the lowest maintenance cost (∆V = 0.02m/s over 60 days).”13 Additional
investigations have further highlighted the utility of L3 orbits in cislunar logistics and transfer architectures.
For instance, Liang et al. demonstrated how stable and unstable manifolds associated with Earth–Moon L3

can facilitate low-energy transfers to triangular libration points, showcasing L3 as a dynamic hub in mission
designs.14 Additionally, Evans et al. highlight the strategic importance of mapping transfers from L3 to Earth
orbit to support future return trajectories, situational awareness, and cislunar traffic management.15 Third,
L3 could serve as an effective staging area for missions like near-Earth object (NEO) capture and redirect.16

Invariant manifolds associated with L3 connect naturally to the Sun–Earth domain, facilitating low-energy
insertion of objects into cislunar space. As a concrete example, Jorba and Nicolás17 demonstrate that a small
asteroid (e.g., 2006 RH120) can be transferred into an Earth–Moon L3 orbit with a ∆V of only ≈ 20 m/s by
aligning with L3’s stable manifold—an extraordinarily low cost that showcases L3’s potential as a capture
point for interplanetary material.

Despite these advantages, heteroclinic transfers involving the L3 region have not been previously explored
in the literature, leaving a gap in multi-body trajectory design knowledge. In this paper, we address that
gap by demonstrating the existence of heteroclinic connections between L1 and L3 periodic orbits in the
Earth–Moon system. Using the planar CR3BP model, we compute and analyze two distinct families of het-
eroclinic transfers—denoted H+ and H−—linking Lyapunov orbits around L1 to their counterparts around
L3. These families correspond to two distinct heteroclinic trajectories that follow different routes through
the Earth–Moon system before converging to the target orbit. We characterize the geometry of these con-
nections in configuration and phase space and examine their time-of-flight and phasing requirements. The
results reveal rich transfer opportunities between L1 and L3, enabled by the intersections of invariant man-
ifold tubes. By identifying and cataloging these L1 → L3 heteroclinic pathways, the present work expands
the toolbox for low-energy mission design in cislunar space—opening the L3 region to practical use through
natural dynamical bridges from the well-studied L1 vicinity.

PLANAR CIRCULAR RESTRICTED THREE BODY PROBLEM

The model used in this study is the planar circular restricted three-body problem (PCR3BP). The model
simplifies the true three-body problem while capturing the main qualitative dynamics. It describes the motion
of an object under the influence of the gravitational force of two larger bodies (e.g., Earth and Moon). The
simplification is achieved by the following assumptions: (i) the object is massless; (ii) the two primary bodies
are in a circular motion around their barycenter with a constant angular velocity, viewed in a rotating frame;
and (iii) the object moves in the plane of the two primary bodies.

Equations of Motion in PCR3BP

In this model, the equations of motion are described in a rotating frame. Also, they are normalized such
that the distance between the two larger masses is 1, their total mass (m1 +m2) is 1, and the sidereal period,
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Figure 1: Planar Circular Restricted Three-Body Problem Configuration

Tm, is 2π. Therefore, the only parameter of the system dynamics is the mass ratio, µ, which is defined as
µ = m2

(m1+m2)
. The rotating frame is selected such that the barycenter of the primaries is at the origin and

m1 and m2 are located on the x-axis at (−µ, 0) and (1 − µ, 0), respectively. The configuration is shown in
Figure 1. The PCR3BP equations of motion in normalized units are,

ẍ− 2ẏ = −∂Ū

∂x
, ÿ + 2ẋ = −∂Ū

∂y
, (1)

where Ū is the effective potential, defined as,

Ū(x, y) = −1

2
(x2 + y2)− 1− µ

r1
− µ

r2
(2)

where r1 =
√
(x+ µ)2 + y2 and r2 =

√
(x− 1 + µ)2 + y2 are the distance of the spacecraft from m1 and

m2, respectively.

Jacobi Constant and Zero Velocity Curves

The Jacobi constant is the sole integral of motion in the CR3BP, and is proportional to the system’s Hamil-
tonian energy. It is defined by,

C(x, y, ẋ, ẏ) = −2Ū(x, y)− (ẋ2 + ẏ2). (3)

The level sets of C define the allowed and forbidden regions in configuration space, bounded by what
are known as zero velocity curves (ZVCs). These curves mark the loci where the velocity magnitude in the
rotating frame,

√
ẋ2 + ẏ2, is zero, and hence delineate the boundaries beyond which a particle with a given C

cannot pass. As the Jacobi constant varies, the topology of these regions changes, opening or closing transit
corridors between different dynamical regions.

At each equilibrium (Lagrange) point Li, the effective potential Ū attains a critical value Ūi, corresponding
to a critical Jacobi constant,*

Ci = −2 Ūi. (4)

For C > C1, all ZVCs are closed around the Earth and Moon, isolating their respective dynamical regions.
As C decreases to C1, a narrow “neck” opens at L1, creating the first possible transit passage. Further
decreases to C2 and C3 open additional necks at L2 and L3, respectively, as well as eventually connecting to
the exterior region beyond the primaries. Table 1 summarizes the critical Jacobi constants for each of the five
Lagrange points.

This progressive opening and closing of dynamical gateways at the equilibrium points forms the backbone
of low-energy transfers. Since this study is focused on heteroclinic transfers between L1 and L3, we restrict
our analysis to Jacobi constants satisfying C < C3.

*This definition differs from other authors, who add a constant µ(1 − µ), to have the Jacobi Constant at L4 and L5 exactly 3. We
dropped this constant in this study to match the current use among the cislunar astrodynamics community.
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Table 1: Critical Jacobi Constants Ci at Lagrange Points Li

Li Ci

L1 3.1883
L2 3.1722
L3 3.0122
L4 2.9880
L5 2.9880

Lyapunov Orbits and Invariant Manifolds

Linearization of the PCR3BP about each collinear equilibrium point (L1, L2, and L3) yields a pair of
real and a pair of purely imaginary eigenvalues. By the Lyapunov center theorem, this structure guarantees
the existence of a continuous family of planar, symmetric periodic solutions—known as Lyapunov orbits—
bifurcating from each Li.

For each Li, there exists a one-parameter family of such orbits, typically parameterized by the Jacobi
constant (or equivalently, by the orbit’s amplitude or period). These orbits lie entirely in the rotating frame’s
plane and are symmetric about the x-axis. As the Jacobi constant decreases further below Ci, the Lyapunov
orbit grows in size and its period changes smoothly. Because they lie just inside the neck openings of the
ZVCs around Li, Lyapunov orbits serve as dynamical gateways between different regions of motion.

Each Lyapunov orbit is a hyperbolic periodic orbit. The monodromy matrix of its linearization has one
real eigenvalue outside the unit circle (unstable) and one inside (stable), plus two neutral eigenvalues at unity
corresponding to phase shifts along the orbit and nearby periodic solutions with different Jacobi constants.
The unstable invariant manifold of a Lyapunov periodic orbit is the set of trajectories that asymptotically
approach the periodic orbit as t → −∞, while the stable invariant manifold consists of trajectories that
asymptotically approach the orbit as t → +∞.

When these manifolds intersect a suitable Poincaré section, they appear as one-dimensional closed curves.
A heteroclinic connection is a trajectory that lies on both the unstable manifold of one Lyapunov orbit and
the stable manifold of another. On the Poincaré section, this corresponds to an intersection point between the
two closed curves, indicating a natural, control-free transfer trajectory between the associated periodic orbits.

Poincaré Sections

A Poincaré section is a classical tool in dynamical systems for reducing continuous-time flows to discrete-
time mappings. One selects a co-dimension-1 “surface of section” ΣC in the 3-dimensional level set of C
and records the state each time a trajectory intersects that surface (usually only when crossing in a given
direction, but see below). By plotting these intersection points in an appropriate 2D subspace, one obtains
a representation that captures the essential structure of the underlying flow: periodic orbits appear as fixed
points, invariant tori as closed curves, and the stable and unstable manifolds of hyperbolic orbits as distinct
traceable curves whose intersections signal possible phase-space connections.

In our Earth–Moon heteroclinic study, we exploit a Poincaré section to reduce the four-dimensional phase
space of the planar CR3BP (two positions and two velocities) to a two-dimensional discrete representation.
We define the surface-of-section,

ΣC = {(y, ẏ) | x = −µ, C(x, y, ẋ, ẏ) = constant}, (5)

in the rotating frame. Each crossing is recorded by its (y, ẏ) coordinates, yielding a 2D scatter plot of points
along trajectories. Overlaying the closed curve of a stable manifold of an L1 Lyapunov orbit with the closed
curve of an unstable manifold of an L3 Lyapunov orbit on this (y, ẏ) plane reveals locations where natural,
zero-∆V transfers are possible; namely, at the intersection points of these two closed curves.
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Figure 2: Lyapunov orbits at C = 3.0010: L3 (red) and L1 (blue), with the ZVC in gray (rotating frame).
Necks around both L3 and L1 are open. Lunar orbital radius shown for reference.

METHODOLOGY

Selection of Jacobi Constant

The first step in generating a heteroclinic transfer is the selection of an appropriate Jacobi constant. As
shown in Table 1, the critical Jacobi constant at L3 is C3 = 3.0122. Any value of C < C3 opens the ZVC
around L3, thereby permitting the existence of a Lyapunov orbit in that region. However, the mere existence
of both L1 and L3 Lyapunov orbits is not sufficient to guarantee a heteroclinic connection between them.

A second requirement is the existence of an intersection between the stable and unstable manifolds of the
selected Lyapunov orbits on the chosen Poincaré section. Through numerical exploration, we find that such
manifold intersections only occur for,

C < Cmax ≈ 3.0015, (6)

where Cmax represents the upper bound on Jacobi constants that support any L1 → L3 or L3 → L1 hetero-
clinic connection.

Figure 2 shows representative L3 (red) and L1 (blue) Lyapunov orbits at C = 3.0010, together with the
ZVC (boundary of gray regions) in the rotating frame. Both necks near L1 and L3 are visibly open, allowing
for the possibility of transit and enabling the search for heteroclinic trajectories in this energy regime.

Lyapunov Orbit Generation

To initialize each Lyapunov orbit computation, we obtain the state vector (xg
0, y

g
0 , ẋ

g
0, ẏ

g
0) and associated

period T g directly from the JPL Three-Body Periodic Orbit Database.18 These values serve as initial guesses
for the differential correction procedure. Typically, the Jacobi constant implied by the JPL solution, CJPL,
differs slightly from the desired target value Ctarget.

Since a true heteroclinic connection requires both Lyapunov orbits to reside on the same energy surface
(i.e., to share an identical Jacobi constant), even a small mismatch in C will place their invariant manifold
tubes on distinct level sets, preventing a natural transfer between them. Consequently, a differential correction
step is indispensable. We perturb the initial x-position and recompute ẏ0 to enforce the energy constraint,

C(x0, 0, 0, ẏ0) = Ctarget, (7)

thereby ensuring that both L1 and L3 Lyapunov orbits lie on the same Jacobi manifold within a specified
tolerance, enabling a true heteroclinic connection.
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To enforce periodicity, we exploit the time-reversal symmetry of the CR3BP in the rotating frame. Lya-
punov orbits are symmetric about the x-axis; thus, at half their period they cross the x-axis perpendicularly
(i.e., ẋ = 0). Starting from the JPL-provided initial guess, we integrate forward from t = 0 until the trajec-
tory first intersects the x-axis with ẏ < 0, which occurs at some time t1. At this point, we impose the vertical
crossing conditions,

y(t1) = 0, ẋ(t1) = 0, (8)

which reduces the boundary-value problem to a single unknown: the corrected value of x0. We then apply
Newton–Raphson iterations to update x0, recomputing ẏ0 at each step to maintain C = Ctarget, until |ẋ(t1)|
falls below a prescribed convergence threshold, εL ≪ 1. For this study the threshold was chosen to be
εL = 10−12.

The correction loop is as follows:

1. Initialization. Choose an initial guess,

Xg
0 =

(
xg
0, 0, 0, ẏ

g
0

)
, Ctarget, tmin, εL, and set the iteration number n = 1.

2. Propagate to half-period. Integrate the equations of motion and the STM, Φ̇ = Df(X) Φ, Φ(0) = I ,
from t = 0 until the first crossing (t1) of,

y = 0, ẏ < 0, t > tmin,

yielding
t
(n)
1 , X

(
t
(n)
1

)
=

(
x1, 0, ẋ1, ẏ1

)
, Φ

(
t
(n)
1 , 0

)
.

3. Form Newton–Raphson update. Define the velocity error

e = ẋ1 .

The correction δx0 is obtained by linearizing ẋ1 with respect to the initial x0. In closed form:

δx0 = ẋ1

( ẏ1
ẍ1 Φ21

) [
1− Φ24

Φ21

1

ẏ
g(n)
0

∂Ū

∂x
(xg

0, 0)−
ẏ1

ẍ1 Φ21

(
Φ31 − Φ34

1

ẏ
g(n)
0

∂Ū

∂x
(xg

0, 0)
)]−1

,

where Φij = Φij(t
(n)
1 ) is the ith row and jth column entry of Φ, ẍ1 = 2ẏ1−∂U/∂x

(
x1, 0

)
, and ẏ

g(n)
0

is the current guess of ẏ at t = 0.

4. Update initial conditions & enforce energy.

x
g(n+1)
0 = x

g(n)
0 − δx0, ẏ

g(n+1)
0 = +

√
−2 Ū

(
x
g(n+1)
0 , 0

)
− Ctarget ,

choosing the “+” sign so that ẏ0 > 0.

5. Convergence check. If |e| < εL, the orbit converges and we set x0 = x
g(n+1)
0 , y0 = y

g(n+1)
0 .

Otherwise, increment n → n+ 1 and return to step 2.

Once the solution has converged, we obtain a Lyapunov periodic orbit with the targeted Jacobi constant.
This orbit forms the basis for generating its associated invariant manifolds.

Using the correction approach described above, families of Lyapunov orbits around both L1 and L3 can be
systematically constructed across a range of Jacobi constants. Figure 3a shows representative orbit families
for L3 (left) and L1 (right), with each orbit colored according to its Jacobi constant. Figure 3b shows the
associated orbital periods of the Lyaponuv Orbits Families. Across the selected C-range, the L3 family’s
period remains essentially fixed at approximately 27 days—despite changes in orbit size—whereas the L1

family’s period decreases steadily with increasing C, reflecting its shrinking Lyapunov orbits.
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(a) L3 (on left) and L1 (on right) Lyapunov orbits col-
ored by their Jacobi constant, C.

(b) L1 (Blue) and L3 (Red) orbital periods; L3 period
is constant throughout and L1 period decrease with C.

Figure 3: L3 and L1 Lyapunov orbits

Invariant Manifold Computation

Along each converged Lyapunov orbit,

X(t), 0 ≤ t ≤ T,

we integrate the variational equation,

Φ̇(t) = Df
(
X(t)

)
Φ(t), Φ(0) = I4×4, (9)

over one full period T . The resulting monodromy matrix Φ(T ) encodes the linear mapping of infinitesimal
perturbations after one orbit. We compute its eigenvalues {λi} and eigenvectors {vi}, identifying the real
pair λu > 1 (unstable) with eigenvector vu and the reciprocal λs = 1/λu < 1 (stable) with eigenvector vs.

To seed the invariant manifolds, we sample the orbit at N evenly spaced phase-fractions,

τk =
k − 1

N − 1
, k = 1, . . . , N, (10)

so τ1 = 0 and τN = 1. At each τk we evaluate the state an STM at fraction point k,

Xk = X(τkT ), Φk = Φ(τkT ), (11)

by integrating (9) from 0 to τkT . The local linear approximation to the manifold at Xk is,

∆Xk = Φk vs/u, (12)

where one uses vs for the stable manifold and vu for the unstable. We split ∆Xk = (∆rk,∆vk), rescale to
a fixed small amplitude εM via,

∆X′
k =

εm
∥∆rk∥

∆Xk, (13)

so that ∥∆r′k∥ = εM . In practice εM = 10−6 (≈ 0.384 km) and N based on the amplitude of the orbit to
balance resolution and computational cost.

Finally, we form two seeds on each side of the orbit,

X̃±
k = Xk ± ∆X′

k. (14)
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Figure 4: the “−” stable manifold branch seeding for L1 Lyapunov Orbit

where the “+” and “−” branches sample both sides of the manifold tube, with the “+” branch following the
manifold in the general direction of increasing x and the “−” branch in the direction of decreasing x. When
these seeds are integrated forward in time (unstable) or backward in time (stable), they trace out the full
four-dimensional invariant manifold used for intersection detection and heteroclinic-transfer construction.

Figure 4 illustrates the configuration-space seeding for the stable manifold of the L1 Lyapunov orbit. The
green curve traces the periodic orbit itself. At each sampled phase fraction, the magenta arrow indicates the
local stable direction obtained by transporting the Floquet eigenvector via the STM. The blue dots mark the
actual seed points X̃−

k = Xk −∆X′
k on the “−” branch of the stable manifold. For clarity of illustration, the

deviation amplitude ϵ has been artificially exaggerated relative to its true value.

Poincaré Section Recording

In prior studies of Earth–Moon equilibrium point transfers, particularly between L1 and L2, Poincaré maps
of manifold intersections are typically generated by recording a single crossing of each trajectory through a
specified section with a prescribed direction of motion. A common choice is a vertical section at x = 1 − µ
(near the smaller primary), where only crossings with ẋ > 0 are recorded. This single-crossing approach,
employed in foundational analyses such as Koon et al.19 and Gómez and Masdemont,20 yields one unique
point per trajectory on the section. Overlapping points from the stable and unstable manifolds in such maps
indicate potential heteroclinic connections.

While this method has proven effective for L1–L2 transfers, we found that it fails to capture the full
manifold structure in the L1–L3 transfer scenario. When applying the single-crossing method to the “−”
stable manifold branch of an L1 Lyapunov orbit (W s−

1 ) and the “+” unstable manifold of an L3 orbit (Wu+
3 ),

the resulting Poincaré map—–using a section ΣC defined at x = −µ (the Earth location in normalized
coordinates)—–exhibited large gaps in the distribution of intersection points in the section’s (y, ẏ) projection.
These gaps were particularly pronounced in regions where heteroclinic intersections were expected to occur.
In other words, where we anticipated the Poincaré cuts of W s−

1 and Wu+
3 to intersect, signaling viable

transfer trajectories, the single-crossing map was underpopulated or entirely empty, undermining our ability
to detect actual connections.

Closer inspection revealed the cause: many trajectories in both W s−
1 and Wu+

3 exhibit localized “looping”
behavior in configuration space. As a trajectory evolves, it may execute tight loops in the x–y plane, a natural
feature of the flow at these energy levels. Crucially, when such loops occur near the section plane x = −µ,
the trajectory can pierce the section multiple times in rapid succession; first in one direction, then looping
around and recrossing in the opposite direction shortly after.

Figure 5b shows a close-up of the manifold geometry depicted in Figure 5a, highlighting this phenomenon.
Several trajectories from W s−

1 and Wu+
3 loop near x = −µ, resulting in successive intersections with the

vertical section line as they reverse direction.
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(a) Stable L1 Manifold (Blue), Unstable L3 Manifold
(Red) and Poincaré Section ΣC (Dashed line) at C =
2.9880. Region in gray box highlighted in panel b.

(b) Closer look at panel (a) (gray box) showing looping
behavior near ΣC .

Figure 5: Invariant Manifold and Loops

Under the conventional single-crossing method (recording only the first crossing with a prescribed ẋ sign),
most of these loop-induced piercings are missed. The algorithm records only the first instance that meets the
directional condition (e.g., the first crossing of x = −µ with ẋ > 0) and ignores subsequent ones. The edges
of the missing regions on the Poincaré map correspond to near-tangential crossings at x = −µ (i.e., when
ẋ approaches zero), a behavior directly linked to the looping trajectories described above. As a result, valid
intersection points near the loops go unrecorded, producing wide gaps in the (y, ẏ) map, especially around
the heteroclinic intersections of interest. This not only leads to discontinuities but also impedes interpolation,
root finding, and optimization routines that require dense, continuous data on the section.

To resolve this, we implemented an enhanced two-event function strategy for recording manifold cross-
ings with the Poincaré section. Each manifold trajectory (for both L1-stable and L3-unstable families) is
propagated using the following logic:

1. Multi-crossing section event: An event is defined at ΣC (x = −µ) without any directional constraint.
Every crossing of the trajectory through x = −µ, regardless of the sign of ẋ, triggers a record of that
state (projected onto the section). This ensures that all relevant piercings, including those caused by
local loops, are captured in the map.

2. Region-limited integration: Each manifold trajectory is terminated once it exits a predefined region
of interest around ΣC . These integration bounds (defined by x limits) are selected to include the local
neighborhood where looping occurs, but to exclude distant re-crossings. This prevents the map from
being cluttered with unrelated or long-return intersections, keeping the focus on near-Earth heteroclinic
structure.

Applying this two-step Poincaré mapping strategy yields a significantly more complete set of manifold
intersections on ΣC . Figure 6b illustrates the improvement. The previously missing regions of the (y, ẏ) map
are now filled with manifold points—blue for W s−

1 and red for Wu+
3 —revealing numerous overlaps that

indicate true heteroclinic connections between L1 and L3 Lyapunov orbits. However, because of the regions
of the tangencies, small segments of the manifold traces remain under-resolved even in the multi-crossing
map. Nonetheless, the critical heteroclinic intersections that were missing in the single-crossing map (Figure
6a) are now clearly visible.

By allowing multiple section piercings per trajectory, while bounding integration to a region of interest, this
enhanced mapping strategy fully reveals the geometry of the L1–L3 manifold intersections on the Poincaré
section. It enables robust detection of heteroclinic connections and enhances the design of low-energy trans-
fers in this previously underexplored regime.
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(a) Poincaré map using the traditional single-direction
crossing criterion. Large gaps appear in key regions.

(b) Poincaré map using the multi-crossing approach,
capturing all crossings in the region of interest.

Figure 6: Comparison of single-crossing and multi-crossing Poincaré mapping strategies on Σ0.

HETEROCLINIC CONNECTION DETECTION

Heteroclinic Connection via Closest-Points Search

With the enhanced Poincaré mapping strategy in place, we now identify heteroclinic connections between
L1 and L3 Lyapunov orbits in the Earth-Moon system. To accomplish this, we implement a closest-points
search on the Poincaré map. For each value of the Jacobi constant C, the procedure is as follows:

1. Generate Manifold Points: Propagate a dense set of trajectories on W s−
1 (L1 stable manifold) and

Wu+
3 (L3 unstable manifold) and collect their (y, ẏ) coordinates at each crossing of the plane x = −µ.

This yield two sets of points that resemble a curve on the section (one for W s−
1 and another for Wu+

3 ).

2. Compute Filtered Distances: For each stable-manifold point ps, compute its Euclidean distance in
the (y, ẏ) plane to every unstable-manifold point pu, but only if sign(ẋs) = sign(ẋu). This ensures we
only compare piercings that have the same direction of motion through the section.

3. Identify Minimum: Among all distance values computed above, select the pair {ps, pu} with the
smallest distance. This pair represents the closest, same-sign approach of W s−

1 and Wu+
3 .

4. Select Connection: Treat this pair closest pair as a heteroclinic intersection. In other words, the
trajectories corresponding to {pu, ps} constitute a nearly continuous path from the vicinity of L3 to
the vicinity of L1. By using the states associated with these and integrating forwards and backwards
appropriately, a full trajectory can be constructed to represent the heteroclinic transfer.

This brute-force closest-point search reliably identifies near-intersections of the invariant manifolds. In
essence, we assume that if Wu+

3 and W s−
1 come sufficiently close in the Poincaré section, a true intersection

is either present or can be obtained with a small adjustment. This assumption is justified by the fact that hete-
roclinic connections exist when the stable and unstable manifolds intersect on a common surface. In practical
terms, if the minimum separation on the map is very small (below some tolerance), the corresponding man-
ifold arcs for a low-energy transfer trajectory between L1 and L3. Hence, if the invariant manifolds did not
come into proximity on the section, no natural heteroclinic transfer would be possible at that energy level. In
our analysis, the smallest distance pair for each C was found to yield a feasible trajectory that connects the
two regions, confirming that the closest approach criterion is sufficient for constructing full path solutions.

Remarks on Precision: The closest two-points approach provides a discrete approximation to the true
intersection. A more rigorous approach would be to treat the manifold traces as continuous closed curves
and solve for an exact intersection via a root-finding technique. For example, one could fit the smooth curves
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through the discrete Poincaré points of Wu+
3 and W s−

1 and then iterate to find where those two curves
intersect exactly. From that intersection one can obtain two state (y, ẏ), x from the Poincaré section x = −µ,
and ẋ from the Jacobi Constant definition ẋ(C, x, y, ẏ). Another approach is to use {pu, ps} as an initial
guess for a differential correction method to eliminate any small gap between them. Implementing such a
curve-fitting and differential correction scheme is left for future work. For the purposes of this study, however,
the simpler closest points strategy is adequate. The separation of {pu, ps} in each case was negligible enough
that corresponding trajectory segments could be patched together with minimal discrepancy.

Intersection Geometry on the Poincaré Map and Heteroclinic Construction

For every Jacobi constant examined, the filled (y, ẏ) section contains two distinct nearest-approach pairs
of points between Wu+

3 and W s−
1 . One lies at a positive ẏ value, the other at a negative ẏ. Even though they

share the same energy level, these two pairs are not mirror images of each other; they occur at different (y, ẏ)
coordinates and correspond to genuinely different passages through the Earth-Moon region (their transfer
geometries will be compared in the following section).

Starting from either of these two closest points, we construct a candidate heteroclinic trajectory by inte-
grating the unstable-manifold state pu backward in time and the stable-manifold state ps forward in time until
both arcs traverse the configuration space linking L3 and L1 Lyapunov orbits. Both integrations were carried
out with a high-order Runge–Kutta scheme using an absolute and relative tolerance of 10−14. The unstable
arc spirals outward from the L3 Lyapunov orbit until it reaches the stable arc which coasts towards the L1

Lyapunov orbit and asymptotically approaches it. Therefore a practical heteroclinic transfer is formed and
denoted: H+

3→1 (for ẏ > 0) H−
3→1 (for ẏ < 0) (15)

Because of the time-reversal symmetry of the PCR3BP equations of motion,

(x, y, ẋ, ẏ, t) 7−→ (x, −y, −ẋ, ẏ, −t), (16)

each of the two physically distinct transfers H+
3→1 and H−

3→1 possesses a mirror image counterpart, H+
1→3

and H−
1→3, respectively, in configuration space, obtained by applying the symmetry. Because this symmetry

reverses the invariant manifold’s stability, it moves from the L1 Lyapunov orbit to the L3 Lyapunov orbit in
the opposite side of the configuration space. Hence, for every Jacobi Constant C investigated, the dynamics
admits four heteroclinic connections in total: the two computed directly from the closest pair procedure, and
their two symmetric twins. For brevity, the discussion that follow concentrate on the explicitly calculated
pairs; the time reversed solution inherit the same dynamical features from H+

3→1 and H−
3→1.

Figures 7 and 8 illustrate this geometry for C = 2.9480. Figure 7 shows the closest two pair {pu, pu}± rep-
resented on the previously generated (y, ẏ) section. Figure 8 represents their associated heteroclinic transfers
H±

3→1 and H±
1→3 colored the same as the initial pair. One can notice that the constructed H±

3→1 trajectories
behave differently, even though they are on the same lower half of the plane.

Figure 7: Poincaré map ΣC showing closest pairs {pu, ps}± at C = 2.9480
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(a) The associated constructed heteroclinic trajecto-
ries, H±

3→1, from the L3 to the L1 Lyapunov orbit.

(b) The time-reversed heteroclinic trajectories, H±
1→3,

from the L1 to the L3 Lyapunov orbit, applying (16)
to the trajectories H±

3→1 in (a).

Figure 8: Heteroclinic Transfers H± Between L3 and L1 Lyapunov orbits at C = 2.9480

TRANSFER TIME CHARACTERIZATION

Operational Zone Definition

Heteroclinic transfers between Lyapunov orbits are theoretically asymptotic connections. By construction,
a stable manifold asymptotically approaches Lyapunov orbit as time → +∞, and an unstable manifold
asymptotically departs the orbit as time → −∞. In other words, the spacecraft state only continuously
approaches the targeted orbit and never truly reaches it in finite time.21Therefore, the notion of “transfer
time” must be defined in a practical, operational sense.

To establish a finite transfer duration, we introduce an operational zone ZLi
around each Li Lyapunov

orbit, representing the effective boundary of that orbit’s neighborhood. This zone is defines by inflating the
orbit’s bounding rectangle by 5% in each coordinate direction (a 1.05× scaling). The inflated bounds are then
used as the axes of an ellipse centered on the orbits. The resulting elliptical region ZLi (around both L1 and
L3) encloses the Lyapunov orbits, and serves as the practical areas within which the spacecraft is considered
to be “on station” near that orbit. In mission terms, entering or leaving this ellipse marks the point where the
spacecraft has arrived or departed from the orbit’s vicinity.

Figure 9a illustrates the operational zones ZL1 and ZL3 as ellipses encircling their Lyapunov orbits. They
are colored as gray with their their borders as dashed lines.

Transfer Time Metric and Extraction

With an operational zone established for each orbit, we quantify the time-of-flight for a heteroclinic trans-
fer. For any trajectory H3→1 that links the L3 and L1 Lyapunov orbits we define the time-of-flight,

tTOF = tentry − texit (17)

• texit (final departure from L3 zone). The last instant the spacecraft leaves the L3 operational ellipse
ZL3

. A trajectory on the unstable manifold may oscillate near the Lyapunov orbit and re-enter ZL3
one

or more times before committing to the transfer trajectory. Using the final exit ensures that all lingering
motion inside the L3 neighborhood is complete and the vehicle is definitively “off station.”

• tentry (first arrival at L1 zone). The first instant the spacecraft crosses into the L1 operational ellipse
ZL1 . From that moment routine orbit-insertion activities could begin, even if the vehicle subsequently
oscillates and requires additional stabilization burns.

12



(a) Operational Zones ZL1,L3 in gray at C = 2.9480 en-
closing the Lyapunov orbits.

(b) Exit and entry points marked on H±
3→1 for the or-

bits in (a).

Figure 9: Operational zones and transfers.

The last-exit / first-entry rule mirrors how a flight team would handle day-to-day operations. Work in the
L3 zone continues until the vehicle leaves that region for good, so the final crossing out of ZL3 marks the start
of the transfer. Likewise, mission preparations at L1 can begin the moment the spacecraft first slips inside
ZL1

, even if it takes a few more loops to settle. By ignoring brief returns to L3 and by not waiting for full
capture at L1, the rule isolates the time interval during which the vehicle is genuinely “in transit” between
the two operational neighborhoods, giving a clear and reproducible measure of transfer duration.

It is worth noting that time-of-flight resolution in our simulation is determined by the integration accuracy
rather than a fixed-step event sampling. The propagator’s default settings (integration time span and step
size/adaptive tolerance) were sufficient to detect the exit and entry events with acceptable accuracy in timing.
In future work, one could refine the timing precision further by using event-finding algorithm or smaller step
size near the boundaries of the zones but for the purposes of this analysis the current resolution is adequate.

Figure 9b shows the representative heteroclinic trajectory paths H±
3→1, connecting L3 and L1 orbits. The

points where the spacecraft exits ZL3
and enters ZL1

on each trajectory (with a yellow triangle denoting the
exit point and a square denoting the entry point), illustrating how tTOF is measured for each transfer.

HETEROCLINIC CONNECTIONS RESULTS AND DISCUSSION

Heteroclinic Connection Family Between L3 and L1 Lyapunov Orbits

We identified a continuous family of heteroclinic transfer trajectories linking L3 Lyapunov orbits to L1

Lyapunov orbits over a range of Jacobi Constants. In particular, using the method described in the previous
sections, feasible heteroclinic transfers were found for Jacobi Constant values from approximately C = 2.89
to C = 2.99. The upper value of C was chosen to be smaller than the critical value of Cmax ≈ 3.0015
to ensure two distinct intersections. On the other hand, a the lower value was chosen because larger orbit
amplitude would demand an enormous amount of seeding for initial conditions. In principle, the search
method can be extended to even lower C values (i.e. larger Lyapunov orbits) but the computational effort
grow substantially as the orbit size increase. As mentioned before, within the chosen energy window, two
distinct branches of heteroclinic transfers emerge, which we label H+

3→1 and H−
3→1. These correspond to two

different topological routes by which the unstable manifold of the L3 orbit connects to the stable manifold of
the L1 orbit.

Figure 10 illustrates representative trajectories from each family H±
3→1 in the rotating frame’s configuration

space (solid lines for the transfer segment). Figure 10a shows sample H+
3→1 trajectories and Figure 10b shows
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sample sample H−
3→1 trajectories, each plotted in the (x, y) plane. For clarity, only 15 trajectories from each

family are drawn, spanning from C ≈ 2.89 (the largest-amplitude Lyapunov orbits considered) to C ≈ 2.99
(the smallest Lyapunov orbits in our study). All depicted trajectories begin near L3 Lyapunov Orbits and end
near the L1 Lyapunov orbits. The exit point from the L3 operational zone, ZL3

, and the entry point to the L1

operational zone,ZL1
are marked on each trajectory (as a triangle and a square respectively in the figures),

consistent with the timing definition introduced earlier.

(a) H+
3→1 Heteroclinic family (b) H−

3→1 Heteroclinic family

Figure 10: Heteroclinic families between L3 and L1

Despite the spread in energy levels, the heteroclinic transfers show an intriguing behavior when crossing
x = −µ. In both families, the spacecraft departs the L3 region and swings around the vicinity of the Earth
before arriving at the L1 orbit. All trajectories cross x ≈ −µ (the x-coordinate of the Earth in the rotating
frame) at roughly the same location. In fact, the intersection of the stable and unstable manifolds occurs
in a narrow band near (x, y) ≈ (−µ,−0.93) in nondimensional units for essentially all C in this range.
This indicates that the connection pathway is geometrically constrained: the stable manifold of the L1 orbit
and the unstable manifold of the L3 orbit consistently meet in the same region of the configuration space,
independent of the Lyapunov orbit size. This makes this region useful from an operation perceptive, once a
spacecraft reaches that region, a small maneuver,∆V , could be applied to transfer the spacecraft from an L3

orbit to a different L1 with a different C (different amplitude). It will be investigated further in future studies.

While all the heteroclinic transfers share this common ”corridor” near x = −µ, the two families H+
3→1

and H−
3→1 exhibit important qualitative differences in how they reach and use this corridor:

• H−
3→1 Family: Trajectories in the H−

3→1 branch tend to perform an extra loop on the L3 side of the
x = −µ plane before finally heading toward L1. In practice, an H−

3→1 trajectory leaving the L3

Lyapunov orbit will first loop around before crossing the Earth’s location (staying on the far side of the
Poincaré section at x = −µ) and only then cross the x = −µ line to travel toward the L1 region. This
behavior can be seen in Figure 10b, where the paths initially curve around on the left side of the figure
before moving rightwards. The size of this loop on the L3 side is correlated with the Jacobi constant:
lower C (i.e. larger Lyapunov orbits) produces a more pronounced and wider loop, whereas at higher
C (smaller orbits) the loop is tighter. In summary, the H−

3→1 heteroclinic transfers spend more time in
the far side of the Moon’s region, looping around at least once in the L3 vicinity, before proceeding to
L1.

• H+
3→1 Family: Trajectories in the H+

3→1 branch follow a different route. They tend to cross the x = −µ
plane more directly from the L3 side and then execute their looping on the L1 side of that plane. As
shown in Figure 10a, an H+

3→1 trajectory departs L3 and almost immediately transitions through the
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x = −µ section to the Earth-Moon side, where it then loops around in the vicinity of the Moon’s side
of the system before approaching L1. The loops associated with H+

3→1 transfers are generally larger in
extent than those of the H−

3→1 family for the same energy level, meaning that an H+
3→1 trajectory at a

given C will swing out further during its loop than the corresponding H−
3→1 trajectory. Furthermore,

at the lower end of our Jacobi constant range (closer to C = 2.89), some H+
3→1 trajectories loop so far

out on the L1 side that they come near the vicinity of the L5 Lagrange point before turning back toward
the L1 orbit. In these cases, the trajectory temporarily ventures into the region around L5 as part of its
path. This is a distinguishing feature of the H+

3→1 family – for smaller C values, the transfer orbit can
effectively “visit” the neighborhood of L5 on its way to L1, whereas H−

3→1 orbits do not.

These geometric differences between the H−
3→1 and H+

3→1 families could be useful from a mission design
perspective. The existence of two distinct routes offers flexibility in planning transfers depending on mission
objectives. For example, if a mission planner prefers a trajectory that stays longer on the far side of the
Moon (or the far side of Earth, in the rotating frame) – perhaps for extended observations – then an H−

3→1

transfer would be the natural choice, since it loops behind the Earth in the rotating frame before heading to
L1. On the other hand, if the goal is to incorporate a swing past the L5 region or generally to spend more
time on the Moon’s side of the system during the transfer, an H+

3→1 trajectory would be more appropriate, as
it carries the spacecraft through the L1 side loop (potentially near L5) en route to the L1 orbit. In summary,
the two heteroclinic families H−

3→1 and H+
3→1 represent two different natural “highways” in the Earth–Moon

phase space, each with its own characteristic path.4, 22 Recognizing and understanding these path differences
enables mission designers to select the transfer that best aligns with the desired route and scientific objectives
of the mission.

Transfer Time Analysis

In the Earth–Moon circular restricted three-body problem (CR3BP), we use nondimensional units where
the primary orbital period is 2π. One time unit in this normalized system corresponds to approximately 4.345
days. For clarity, all transfer times (tTOF) are converted to days using this factor (tdays = 4.345 tnd). This
means that a dimensionless time of 2π (one Earth–Moon revolution) is about 27.3 days in physical units.
Since the transfer time for the computed heteroclinic transfers and their time reversed version is the same, we
will refer to the combined family as H±, where H± = H±

3→1

⋃
H±

1→3.

Figure 11 shows the total transfer time (time-of-flight from departure of L3 zone to arrival at L1 zone) as
a function of the Jacobi constant C for the two heteroclinic families (H− in blue and H+ in red). Several
notable features can be observed from this plot:

• Discontinuities at high C values: Both time-of-flight curves exhibit a sharp jump (discontinuity) at a
certain Jacobi constant. In particular, the H− curve jumps around C ≈ 2.98, and the H+ curve around
C ≈ 2.97. This abrupt increase is an artifact of our operational zone exit/entry definitions. At these
higher C (smaller Lyapunov orbits), the trajectory leaving L3 performs an extra loop entirely outside
the L3 operational zone before finally entering the transfer route. According to our timing rule, this
entire loop gets counted in the transfer duration. For slightly lower C (larger orbits), a similar looping
occurs but it enters the L3 zone partway, meaning the spacecraft is considered to still be in operation
before completing the loop – thereby excluding that loop from the transfer time. It can be seen in Figure
10 where trajectories with higher C values tend to start the transfer earlier than the lower C values. The
net effect is that beyond these threshold Jacobi values, the transfer time suddenly increases by roughly
the period of an L3 Lyapunov orbit (≈ 27 − 28 days). Indeed, we find the size of the jump in each
curve is approximately equal to one L3 orbit period, confirming that the discontinuity corresponds to
the inclusion of one additional loop in the transfer trajectory.

• Transfer time increases with C: Aside from the discrete jumps, the overall trend is that transfer time
grows steadily with increasing Jacobi constant for both families. In the energy window C ≈ 2.89 to
2.99, higher C (i.e. smaller-amplitude Lyapunov orbits) consistently yields longer flight times. For
example, at the low end of this range (C ≈ 2.89 corresponding to the largest orbits considered), the
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Figure 11: Transfer time tTOF in days vs. Jacobi constant C

heteroclinic transfers are the quickest. At the high end (C ≈ 2.99, smallest orbits), the time-of-flight is
longer. This monotonic increase makes intuitive sense: higher C value have smaller Lyapunov orbits
amplitude which would lead to smaller operational zones Z . Therefore, the distance the spacecraft
has to travel further between the operational zones, so they naturally take more time to complete the
transfer. Thus, within our study’s range, raising the Jacobi constant leads to a longer transfer duration
(with the only exception being the sudden jump discussed above).

• H− and H+ time offset: For any given Jacobi constant in this family, H− transfers are consistently
faster (shorter time-of-flight) than H+ transfers. The two curves in Figure 11 remain roughly parallel
across the range, with the H+ curve about 4–5 days above the H− curve at almost every C. In other
words, an H+ transfer typically takes 4.5 days longer than the corresponding H− transfer. This nearly
constant time gap can be traced to the route geometry described earlier. As discussed in the previous
subsection, H+ trajectories cross the x = −µ Poincaré section more directly and then execute a larger
loop on the L1 side (often swinging out toward the vicinity of L5 for lower C values). In contrast,
H− trajectories spend more time looping on the L3 side and take a somewhat more direct path once
they cross to the L1 side. The longer, more expansive loop in the H+ family adds extra distance and
duration to those transfers, explaining why H+ missions consistently require a few additional days of
travel compared to H− missions.

In summary, the transfer time analysis reinforces the distinction between the two heteroclinic families. Not
only do H− and H+ follow different spatial routes, but they also entail different time-of-flight profiles: H−

provides a faster transfer, whereas H+ offers an alternative path at the cost of a longer travel time. This gives
mission designers a clear trade-off – one can choose the shorter transfer of H− or opt for the H+ route (with
its unique looping near the L5 region) if the mission objectives favor that trajectory, accepting the roughly
4–5 day additional time-of-flight. Such flexibility in the natural dynamics can be crucial in mission planning,
allowing the route to be tailored to both time constraints and desired scientific/operational goals.
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Figure 12: Averaged orbital elements on Tisserand Contours

Orbital Elements Analysis

To further characterize the heteroclinic transfers identified in this study, we examine the orbital elements
of each trajectory along its transfer arc, focusing on the average semimajor axis (a) and eccentricity (e)
relative to Earth. The spacecraft states, originally computed in the rotating frame, are first transformed into
the Earth-centered inertial (ECI) frame, then converted into approximate conic elements under the two-body
(Keplerian) assumption. These elements are sampled along each trajectory and averaged over the full transfer
duration, excluding segments inside the operational zones, ZL3

,ZL1
.

Figure 12 shows the resulting distribution of (a, e) values for the H+ and H− families, overlaid on contours
of the Earth-relative Tisserand Parameters, an approximation to the Jacobi constant in orbital element space.
Notably, the H− family exhibits consistently lower average semimajor axes than the H+ family, a result that
aligns with the transfer time analysis discussed earlier: lower a corresponds to trajectories that remain closer
to Earth on average, which in turn moves the spacecraft faster, resulting in a faster transfer. This observation
reinforces the dynamical distinction between the two families H+ and H−.

A second observation concerns the Tisserand contours. As shown in Figure 12, the averaged orbital el-
ements are above the T = 3 contour. Therefore, they are in a regime where transit between gravitational
region is possible. This is consistent with opening and closing of the L1 and L3 gateways which makes the
heteroclinic transfers feasible.

Figure 13 further illustrates a representative heteroclinic trajectory in both the rotating and inertial frames.
The left panel shows the path in the rotating frame, where the dashed curve trajectory in the operational zones,
the solid line is the transfer segment, and the green and red dots are the exit and entry points respectively.
The right panel reveals the same trajectory in the inertial frame, clearly demonstrating that the motion is
non-Keplerian throughout: the path does not trace a simple ellipse, and instead exhibits continuous rotation
and precession. This behavior confirms that the three-body gravitational effects are dynamically active over
the entire transfer, and the conic elements (e.g. a(t), e(t)) are varying along the arc.

CONCLUSION

Driven by the growing interest in deep-space exploration and the development of cislunar infrastructure, as
well as the underexplored potential of the Earth–Moon L3 region,12, 16, 17 this study investigated low-energy
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(a) H+
3→1 Heteroclinic Trajectory at C = 2.93 in the

rotating frame
(b) H+

3→1 Heteroclinic Trajectory at C = 2.93 in the
inertial frame

Figure 13: Rotating and Inertial frame representative trajectory

transfers between L1 and L3 Lyapunov orbits. We have demonstrated, for the first time, the existence of
heteroclinic connections linking periodic Lyapunov orbits around Earth–Moon L1 and L3. By leveraging
the planar CR3BP model, we identified two continuous families of such transfers (denoted H− and H+),
thereby addressing a key gap in multi-body trajectory design and expanding the toolbox of ballistic cislunar
routes.23–25

The two heteroclinic families exhibit distinct geometries and time-of-flight characteristics. Using an en-
hanced multi-crossing Poincaré map technique, we captured all relevant manifold intersections on the sec-
tion, revealing the complete intersection geometry and enabling the systematic construction of both H−

3→1

and H+
3→1 trajectories. The H+

3→1 transfers tend to include a wide looping arc on the near-moon side, L1

region (often reaching toward the L5 vicinity), whereas H−
3→1 transfers spend more time on the far side (L3

region) before transitioning. These geometric differences translate into different timing profiles: for a given
energy (Jacobi constant), H−

3→1 transfers are consistently faster, typically achieving shorter flight times by
about 4–5 days compared to their H+

3→1 counterparts.

Our analysis of transfer duration as a function of Jacobi constant revealed a clear trend: higher Jacobi con-
stants (smaller-amplitude orbits) yield longer flight times, while lower values (larger orbits) produce quicker
transfers. This monotonic increase in time-of-flight is marked by discrete jumps in duration; each jump
adding roughly one L3 orbit period (≈ 28 days). These jumps occur because of our operational zone, Z ,
definitions: when a trajectory executes an extra loop entirely outside the L3 zone, ZL3 , before final exit, that
loop is counted in the transfer time; for slightly larger orbits that loop is partly inside the zone, and the loop is
excluded from the transfer time. Aside from these zone-definition–induced discontinuities, the H−

3→1 family
consistently achieves a shorter time-of-flight than H+

3→1 across the entire energy range. These results high-
light a meaningful trade-off between the two routes and underscore how energy level and zone definitions
influence transfer efficiency.

Practically, the existence of low-energy L1–L3 heteroclinic transfers carries significant implications for
mission design. It provides a new pathway to reposition spacecraft between near the moon and far from the
moon periodic orbits without the need for large propulsive maneuvers or insertion burns at the destination.
For example, an asset stationed in an L1 halo orbit (such as a Gateway platform or communications relay)
could be transferred into an L3 orbit ballistically, allowing it to take up a strategic vantage point behind the
Earth with minimal fuel expenditure. This capability enhances operational agility in cislunar space: it enables
cislunar surveillance or communication platforms at L3 to be deployed and serviced from L1, and it offers a
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way to redistribute spacecraft among libration-point orbits in response to evolving mission needs, all while
leveraging natural dynamics.

Furthermore, our results help open the Earth–Moon L3 region as a useful staging area for advanced mis-
sions. Because of L3’s quasi-stable nature, it can maintain objects in the vicinity with very small correction
maneuvers. This suggests that L3 could serve as a capture point for interplanetary material or a logistics hub
in the future. For instance, a captured near-Earth asteroid might be inserted into a stable L3 orbit by aligning
with L3’s stable manifold, as earlier analyses have hinted, requiring only a very small ∆V . Similarly, lunar
or deep-space supply depots could be positioned at L3 and reached via ballistic transfers from L1 or L2. The
two families of trajectories identified in this work give mission planners flexibility to choose between a faster
transfer (H−

3→1) or a longer transfer (H+
3→1) that might cover different spatial regions; a choice that can be

made based on mission priorities such as time constraints or scientific observation needs.

Looking ahead, several directions for future research are identified:

1. Sensitivity and Robustness Analysis: Ongoing and future work will examine how sensitive the L1–L3

heteroclinic trajectories are to small perturbations and realistic mission constraints. This effort will
quantify the tolerance to initial manifold-targeting errors, finite-thrust maneuver deviations, timing
mismatches, and launch-window shifts, and will determine the necessary station-keeping or guidance
corrections. By combining sensitivity studies with robustness testing—under both idealized perturba-
tions and practical navigation errors—we will assess how much ∆V or control authority is required to
maintain the heteroclinic transfer in real-world operations.

2. Improved intersection precision: We plan to refine the heteroclinic trajectory computation by in-
creasing the precision of manifold intersection targeting. Techniques such as high-order curve fitting
of manifold trajectories or differential correction algorithms can be applied to achieve more exact in-
tersections between stable and unstable manifolds. Improving this intersection precision will reduce
any insertion errors, minimize the ∆V needed for cleanup maneuvers, and possibly uncover additional
transfer solutions that were missed with the current resolution.

3. Extension to 3D models: The next step is to explore heteroclinic connections in higher-fidelity dy-
namical models. This involves extending the analysis to the spatial (3D) CR3BP and the bicircular
four-body problem to assess whether similar L1–L3 transfer families exist when out-of-plane motion
and solar gravitational perturbations are included. Verifying the persistence of these transfers in a 3D
setting will be crucial for actual mission design.

4. Utilizing L3 as a staging point for asteroid capture and logistics: Finally, we will investigate mission
concepts that leverage Earth–Moon L3 as a staging hub. This entails analyzing scenarios where a small
asteroid or other payload is delivered to L3 orbit (for example, via a heteroclinic transfer from a trans-
lunar trajectory) and held there for exploration or resource utilization. Additionally, we will consider
how L3 could function in a network of cislunar logistics—for instance, as an intermediate storage orbit
for fuel or supplies, or as a relay location—and what role the identified low-energy transfers would
play in establishing and sustaining such an infrastructure

In summary, this work confirms that ballistic heteroclinic transfers between L1 and L3 are feasible and
provides a first characterization of their families and properties. These results not only fill a notable gap in
cislunar trajectory research but also lay a foundation for expanding future mission architectures to include
the Earth–Moon L3 point. With continued research addressing the above directions, we expect the L3 hub to
become an attractive option in the design of future deep-space missions and cislunar operations.
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D’Estudis Catalans, Preprint No. 270, 1994.

[24] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross, “Low energy transfer to the Moon,” Celestial
Mechanics and Dynamical Astronomy, Vol. 81, 2001, pp. 63–73.

[25] M. W. Lo and S. D. Ross, “The Lunar L1 Gateway: Portal to the stars and beyond,” AIAA Space 2001
Conference, Albequerque, New Mexico, 2001.

20

https://www.nasa.gov/gateway
https://ssd.jpl.nasa.gov/tools/periodic_orbits.html#/intro

	Introduction
	Planar Circular Restricted Three Body Problem
	Equations of Motion in PCR3BP
	Jacobi Constant and Zero Velocity Curves
	Lyapunov Orbits and Invariant Manifolds
	Poincaré Sections

	Methodology
	Selection of Jacobi Constant
	Lyapunov Orbit Generation
	Invariant Manifold Computation
	Poincaré Section Recording

	Heteroclinic Connection Detection
	Heteroclinic Connection via Closest-Points Search
	Intersection Geometry on the Poincaré Map and Heteroclinic Construction

	Transfer Time Characterization
	Operational Zone Definition
	Transfer Time Metric and Extraction

	Heteroclinic Connections Results and Discussion
	Heteroclinic Connection Family Between L3 and L1 Lyapunov Orbits
	Transfer Time Analysis
	Orbital Elements Analysis

	Conclusion
	Acknowledgment

