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Abstract 

 
A new method of capturing an asteroid in an orbit around the Earth is proposed, inspired by the 
theory that the irregular satellites of Jupiter and Neptune may have at one time been members of 
a binary asteroid. After a close approach with the planet, the binary asteroid was disrupted, and 

one member was captured into a permanent orbit. A parametric study was conducted by 
simulating binary-Earth encounters. The total mass of the binary system and the velocity of the 

binary asteroid relative to the Earth as were found to be the two 
dominant parameters affecting capture. These results were used to select a candidate near-Earth 
binary asteroid, 1999 H F1, with which additional simulations were conducted. It was found that 
the candidate asteroid could only be captured with a high probability at low velocities, and the 

-near-Earth 
binary asteroids could be captured within the Hill sphere. The effect of treating the larger 

member of the binary system as an extended body and the effect of the moon were also 
considered. A close approach with the moon sometimes resulted in one or both binary members 

being captured within the Hill sphere.  A single asteroid can also be captured when it has a close 
encounter with the moon, suggesting that lunar-encounter driven capture deserves further 

attention. 
 

K eywords:   Binary Asteroids, Asteroid Capture, Binary Exchange, Near-Earth Asteroids 
 

1. Introduction 
 

It has been proposed that many of the irregular satellites within the solar system were not 
formed by accretion within circumplanetary disks as is the case for regular satellites1. Instead, 
irregular satellites are believed to have once been asteroids that were captured into permanent 
orbits around their respective planets2. Various methods describing how these asteroids were 
captured have been formulated. While these capture mechanisms give us a description of 
irregular satellite formation in the early solar system, they also provide potential methods by 
which an asteroid could be captured in an orbit around the Earth. A captured asteroid would have 
many uses and could offer financial, technological, and political benefits for government 
agencies or private companies willing to explore this novel resource. The recent decommission 
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of the NASA space shuttle and the accompanying push by the United States government for 
private space exploration makes these incentives for private companies particularly interesting. 

Having an asteroid in such close proximity to the Earth would provide a rich source of 
precious metals. Mining the minerals is destroying ecosystems and causing 
danger to those who work in or live near these mining sights. Mudslides and contaminated 
drinking water are just two of the threats posed to residents of mining towns. Environmental 
devastation is not the only negative effect of excessive mining. If mineral excavation rises just 

ply of accessible lead will be gone in 17 years, tin in 19 
years, copper in 25 years, and iron in 54 years3

limits or find a new source of these raw materials4.  
A captured asteroid would provide a rich source of these metals5,6. Data captured by the Near 

Earth Asteroid Rendezvous spacecraft has shown that Eros, a near Earth asteroid, contains more 
aluminum, gold, silver, and zinc than could ever be mined from the Earth. The economics of 
mining asteroids has been analyzed and deemed feasible7,8,9.  Potential candidates for excavation 
methods include drilling and magnetic extraction. Both nuclear and solar energy could be used to 
power these processes. Having access to such a large mineral resource would greatly decrease 
the strain placed on the Earth to provide raw materials. Ecosystems could be saved from 
destruction and potential health risks to humans would diminish. By developing the technology 
to capture an asteroid in an orbit around the Earth, the environmental damage caused by mining 
could be stopped and a seemingly endless supply of precious metals could be obtained 

In addition to improving life on Earth, the captured asteroid would be of great aid in space 
exploration. Building fueling stations on asteroids would allow for longer and less expensive 
space exploration missions. A spacecraft could be loaded with only enough fuel to reach the 

s atmosphere. After 
fueling up on the asteroid, the craft could continue on its mission with a full tank. Space stations 
could also be built on asteroids and act as manufacturing plants for space materials or launch 
sites for spacecrafts. Building materials on the asteroid using the asteroids rich supply of raw ore 
would take away the expense of launching the materials out of the atmosphere. Spacecraft being 
launched from the surface of the asteroid could take advantage of the angular velocity of the 
asteroid due to its orbit around the Earth.  

A captured asteroid would also allow scientists to study the composition of a celestial body 
without it being distorted by a harsh entry into our atmosphere. Some asteroids are believed to be 
minimally altered from their state when the solar system first formed. Being able to study such 
an asteroid would give great insight into the nature and composition of deep space bodies. 
Lastly, if the situation were to arise, a captured asteroid could be used as a shield to protect the 
Earth form potentially hazardous objects10. 

Three main problems must be solved in order to bring an asteroid to Earth. The first 
obstacle involves developing the appropriate control algorithm and acceleration profile needed to 
steer an asteroid from .  Research 
on this problem was conducted last year by a Virginia Tech senior design team led by Zaki 
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Hasnain and Chris Lamb11. Their research focused on developing an algorithm that could be 
used to steer a single asteroid to have a close approach with the Earth. The second challenge is to 
design and build the machine that will thrust the asteroid towards Earth. Ideas such as a robot 
that ejects matter gathered from the surface of the asteroid10 and solar powered drivers12 have 
been proposed. 

The third problem, which is the focus of this paper, is how to slow down the asteroid to an 
appropriate speed for it to remain in a stable Earth orbit. Within this report, we propose a new 
method for capturing a near Earth asteroid by using a binary exchange mechanism. This 
technique relies on a two asteroid system, known as a binary asteroid, making a close approach 
to the Earth. This method has been used to explain the formation of the irregular moons of 
Jupiter13, 14 and Neptune15,16. In Section 2, we will first explore binary exchange and other 
models of asteroid capture that have been proposed. Section 3 provides an overview of the solar 
system s binary asteroid population and which of these asteroid could be potential candidates for 
capture. Section 4 formulates the problem and describes the numerical techniques used to 
conduct the simulations. Section 5 presents results of numerical simulations of binary-Earth 
encounters for a wide range of binary asteroid parameters and initial conditions. In Section 6, a 
candidate binary asteroid is chosen based on the results presented in the previous section. Section 
7 presents additional simulations of encounters between the candidate asteroid and Earth. In 
Sections 8 and 9, the effects of treating the larger asteroid as a non-spherical extended body and 
the effects of the moon are examined, respectively. Concluding remarks are given in Section 10, 
and acknowledgements are given in Section 11. 

 
2. Previously Proposed M ethods of Asteroid Capture 

 
While regular satellites are characterized by nearly circular and uninclined orbits, irregular 

satellites move along highly eccentric and/or inclined orbits. These differences suggest that the 
formation mechanisms for each type are different and that irregular satellites were once on 
hyperbolic orbits and later captured. Four models of capture have been proposed in previous 
literature: 
 

(1) Collisions between an asteroid and a planet resulting in a captured satellite 
(2) Capture through dissipation of orbital energy due to gas drag 
(3) Pull-down capture, in which a planet s mass suddenly increases 
(4) Capture through multi-body gravitational interactions 
 
A review of last three methods is given in Jewitt and Haghighipour (2007)17. In method 

1, the size of the asteroid required for capture would be large enough to produce a catastrophic 
collision, and the ejection speed of large fragments after collision would not be great enough to 
produce stabilized orbits18. Studies of gas drag capture have shown that permanent capture due to 
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gas drag is possible, but unlikely to have occurred in the early solar system19. Pull-down capture 
was also shown to be able to produce capture in a Sun-Jupiter-Satellite environment20.  

Clearly, methods 1 and 3 are not reasonable methods for capturing an asteroid around the 
Earth. Also, method 2 would be very difficult to implement, as a spherical dust cloud would need 
to be created around the Earth. Thus, method 4 is the most feasible method for Earth capture. 
One type of gravitational capture occurs when a satellite interacts with two planets and becomes 
bound to one of the planets. It has been shown that in the early solar system, encounters between 
the outer planets within the planetesimal disk could have resulted in capture18. It has also been 
shown that planetary resonance could lead to irregular satellite capture21.  

The most feasible mechanism to implement in an Earth environment is binary exchange. 
This method has been used to explain the capture of Triton by Neptune15,16 and the irregular 
moons of Jupiter13,14. This method relies on a close encounter between a two member system, 
known as a binary asteroid, and a planet. If the binary asteroid is oriented correctly when it 
makes its closest approach to the planet, one of the two asteroids could be moving slowly enough 
relative to the planet to be captured. This method of capture was examined in an Earth 
environment for a wide range of binary asteroid parameters and initial conditions. A schematic 
illustration of binary exchange is shown in Figure 1. 

  
F igure 1. Schematic of Binary Exchange (Movie available at 

http://www.youtube.com/watch?v=n6A8xA Cf2V A) 

 
3. Binary Asteroid Population 

 
A binary asteroid is comprised of two asteroids that orbit their center of mass as the system 

follows some larger orbit. In Pravec and Harris (2007)22, an overview of the characteristics of 73 
binary asteroids is given, including the 36 known near-Earth binary asteroids. For the entire 
population surveyed, the total mass of binary systems ranges from 3.1x109 kg to 2.6x1019 kg, the 
mass ratio, defined as ratio of the mass of the larger member to the mass of both members, 
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ranges from 0.5 to 0.999, and the binary semi-major axes range from 500 m to 3400 km. The 
orbital eccentricity of the mutual binary orbit of the majority of binary asteroids is very small.  

Simulations were conducted using these parameter ranges; however, the 36 near-Earth 
asteroids were only considered as potential candidates for capture. The process of steering a 
binary asteroid from its current orbit to an orbit with a close encounter with the Earth was left for 
future work. Given their proximity, near-Earth binary asteroids would be the easiest to steer to 
the Earth. The near-Earth binary asteroids have total masses ranging from 3.1x109 kg to 6.7x1013 
kg, mass ratios ranging from 0.578 to 0.999, and semi-major axes ranging from 500 m to 6 km.  
The total masses, mass ratios, and semi-major axes of the near-Earth binary asteroids are 
presented in Appendix 1. 

 
4. Problem Formulation 

 
Simulations were conducted using a six stage adaptive step size Gragg-Bulirsch-Stoer 

integration scheme constructed using Matlab23. An overview of this numerical integration 
technique is given in Appendix 2. To check the accuracy of the simulations, the relative change 
in total energy was tracked, and was found to never vary by more than 10-6. The simulations 
were run for 6x106 seconds. Binary parameters and initial conditions were selected using a Latin 
hypercube sampling technique in order to efficiently span the parameter space24.   The equations 
of motion governing the binary-Earth system are, 
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with respect to an Earth centered frame.  The subscript e denotes the Earth, and the subscripts 1 
and 2 denote the larger and smaller members of the binary asteroid, respectively. 

The variables within each simulation were the total mass of the two asteroid system, Mtot, the 
mass ratio, c, as defined earlier, the velocity of the binary system at an infinite distance away 
from the earth, v , from which the initial velocity vo is derived, the closest approach of the 
binary center of mass to the Earth, rp, from which an angle  orienting vo is derived, the initial 
semi-major axis of the mutual binary orbit, a, the initial eccentricity of the mutual binary orbit, e, 
one angle prescribing the true anomaly, , three angle prescribing the orientation of the binary 
orbit, , , , and a variable determining the direction in which the binary rotates, g. A schematic 
showing these initial conditions and binary parameters relative to the binary center of mass is 
shown in Figure 2.   
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F igure 2. Schematic of Initial Conditions Relative to Binary Center of Mass 
  

The asteroids were assumed to have a density of 3 g/cm3 and were initially located at the 
edge of the Earth s Hill sphere. The variables were varied across the following ranges: Mtot  
[108kg,1020kg], c  [0.5,0.99], v   [0m/s,100m/s], rp  [2Re,60Re], a  [4R1,16R1], e  [0,0.8], , 

, ,   [0,2 ], and g = -1 or 1, where Re is the radius of the Earth and R1 is the radius of the 
larger asteroid. After each time step, the distance between the two asteroids was compared with 
the sum of the asteroid s radii. If the distance was less than this sum, the simulation was marked 
as resulting in a collision. Figure 3 shows one simulation in which capture occurred and the 
resulting orbit was contained within the Earth s Hill sphere. For this simulation, Mtot = 5.94x1017 
kg, c = 0.95, v  = 100 m/s, rp = 2Re, a = 1.5R1, e = 0,  = 1.8,  = 0,  = 0,  = 0, and g = 1. 
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F igure 3. Example of Asteroid Capture Through Binary Exchange (Movie available at 

http://www.youtube.com/watch?v=hg1IfW Ks3bc)  
  

In Figure 3, the Hill sphere is shown by the purple circle.  In order for an asteroid to 

Hill sphere, which has a radius of is 1.5x109 m, or roughly 235 Earth radii.  Once the asteroid 

and render it unbound from the Earth. 
 

5. Results of Parametric Study 
 
The following plots represent results from 100,000 simulations. First, the effect of each 

variable on the probability of capture was examined.  An asteroid was considered captured if the 
semi-major axis of its final orbit around the Earth was positive.  Whether the orbit was contained 

 considered when computing the probability of capture. 
Figure 4 shows plots of the probability of capture as a function of the variables log(Mtot), c, v , 
rp, a, and e for the larger of the two asteroids, while Figure 5 shows the same plots for the 
smaller of the two.  

The probability of capturing the smaller of the two asteroids is higher than that of 
capturing the larger asteroid in all cases. It can be seen that v  and Mtot have the most profound 
effect on the probability of capture, with the probability decreasing as v  is increased and 
increasing as Mtot is increased. The probability is also seen to decrease with increasing rp and e 
for both asteroids. Increasing a and c causes an increase in the probability of capture. 
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F igure 4. Probability of Capture as a Function of the System Variables for Larger Binary 
Member . (a) Total Mass, (b) Mass Ratio, (c) Velocity at Infinity, (d) C losest Approach to 

the Earth, (e) Initial Binary Semi-major Axis, (f) Initial Binary O rbit E ccentricity 

  
F igure 5. Probability of Capture as a Function of the System Variables for Smaller Binary 
Member . (a) Total Mass, (b) Mass Ratio, (c) Velocity at Infinity, (d) C losest Approach to 

the Earth, (e) Initial Binary Semi-major Axis, (f) Initial Binary O rbit E ccentricity 

These trends should be expected, as binary systems with lower v  have less total energy, 
and therefore less energy loss is required for capture to occur. Binaries with higher total masses 
rotate at faster rates than those with lower masses. Thus, at the closest approach, the asteroid 
closest to the Earth will be moving slower relative to the Earth (see Figure 1). Smaller close 
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approaches result in higher probability of capture since the tidal forces responsible for disrupting 
the binary and pulling one member into a permanent orbit are stronger. The trends observed in a 
and e can be attributed to greater probability of collision at low a and high e, as the two asteroids 
had closer encounters in these regions. 

The next group of plots displays the resulting semi-major axes of the captured asteroids 
as functions of the system variables. Figure 6 represents data for the larger binary members, 
while Figure 7 represents data for the smaller member.  The horizontal red line in each plot 

-major axis must be below this red line. 

  
F igure 6. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 

Variables for Larger Binary Member . (a) Total Mass, (b) Mass Ratio, (c) Velocity at 
Infinity, (d) C losest Approach to the Earth, (e) Initial Binary Semi-major Axis, (f) Initial 

Binary O rbit E ccentricity 
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F igure 7. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 

Variables for Smaller Binary Member . (a) Total Mass, (b) Mass Ratio, (c) V elocity at 
Infinity, (d) C losest Approach to the Earth, (e) Initial Binary Semi-major Axis, (f) Initial 

Binary O rbit E ccentricity 

The resulting semi-major axes of the smaller member tend to be smaller than those of the 
larger member, and the plots are denser for the smaller member, again showing a higher 
probability of capture. Some trends can be seen in each variable; however, the total mass is the 
dominant variable in determining the size of the orbits. Figure 8 contains plots showing v  vs. 
Mtot for the smaller and larger binary members. These are the most important variables affecting 
the probability of capture and the size of the resulting orbit. In the plots, a blue mark represents a 
captured asteroid, a red mark represents an uncaptured asteroid, and a green mark represents a 
collision between the two asteroids. 

There are distinct regions for both members in which capture is more likely to occur. For a 
given binary system of know total mass, the plots below can be used to determine the maximum 
v  at which capture can occur. Simulations conducted in two dimensions exhibited the same 
trends as those observed in three dimensions. 
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F igure 8. Capture Distr ibution over M tot vs. v  

  

6. Choice of Candidate Asteroid 
 

From the results presented in the previous section, it is clear that the total mass of the binary 
system has the largest impact on the probability of capture and the size of the resulting orbits. 
For this reason, we propose that the best candidate near-Earth binary asteroid for capture is 1999 
HF1. This is the most massive of the known near-Earth binary asteroids, with a total mass of 
6.7x1013 kg. The mass ratio of this binary is 0.988, and the orbital semi-major axis is 6 km22. In 
the following sections, results of simulations considering this particular binary asteroid are 
presented. In these simulations, the eccentricity of the binary system was assumed to be 0. 
Therefore,  was not varied, as varying  and  are the same for circular orbits. 

In the previous section, each simulation involved eleven initial conditions and binary 
parameters. When considering just one binary asteroid, the total mass, mass ratio, initial semi-
major axis, and initial eccentricity are known, thus reducing the number of unknowns in each 
simulation to seven.  The results from the previous section suggest that the binary asteroid 1999 
HF1 is too small for binary exchange to be successful.  However, we can now test over a finer 
grid of initial conditions since only seven unknowns are involved in each simulation, with the 
hope that this higher resolution in the parameter space will produce capture at a total mass of 
6.7x1013 kg. 

 
7. Candidate Asteroid Simulations 

 
In Section 5, many different total binary masses, mass ratios, and initial semi-major axes 

were considered. Therefore, no critical value of close approach was observed in the data. 
However, now that only one binary system is being considered, we expected to observe some 
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tidal radius, below which capture is more likely to occur. In previous literature13,14,15, an 
approximation of this tidal radius has been given by, 
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m m
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where m1 and m2 are the masses of the two members of the binary and Mp is the mass of the 
planet. For the binary asteroid 1999HF1, this tidal radius is 6.02 Earth radii. Figures 9 and 10 
show the probability of capture as functions of v  and rp for the larger and smaller members of 
the binary, respectively. On the plot of probability of capture vs. rp, the tidal radius is marked by 
a vertical red line. 

  
F igure 9. Probability of Capture as a Function of the System Variables for Larger Binary 

Member . (a) V elocity at Infinity, (b) C losest Approach to the Earth 
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F igure 10. Probability of Capture as a Function of the System Variables for Smaller Binary 

Member . (a) V elocity at Infinity, (b) C losest Approach to the Earth 

For the larger mass, the probability of capture drops quickly as v  is increased and is 
slightly higher for smaller close approaches (note that the range in plot (b) for the larger mass is 
only 0% to 4%, while it is 0% to 40% for the smaller mass). For the smaller mass, the probability 
of capture drops below 10% above v  = 30 m/s, and is highest when rp is less than 6 Earth radii, 
which agrees with the theoretical prediction.  

Figures 11 and 12 present the resulting semi-major axes from simulations that resulted in 
capture as functions of v  and rp for the larger and smaller members of the binary, respectively. 
As in Figures 6 and 7, half the radius of the Hill sphere is marked by the horizontal red line. On 
the plot of semi-major axis vs. rp, the tidal radius is marked by a vertical green line. 
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F igure 11. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 
Variables for Larger Binary Member . (a) V elocity at Infinity, (b) C losest Approach to the 

Earth 

  
F igure 12. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 

Variables for Smaller Binary Member . (a) V elocity at Infinity, (b) C losest Approach to the 
Earth 

 
These plots show that the smallest resulting semi-major axes occur when the close 

approach is less than the tidal radius. We also observe two bands on the v  plot for each asteroid. 
The lower bands in the v  plots correspond to close approaches less than the tidal radius. The 
higher bands in the v  plots correspond to close approaches greater than the tidal radius. Again, 
these findings agree with the theoretical prediction given by Equation 2.  Figure 13 displays 
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captured and uncaptured data points for rp and v . The colors have the same meaning as in 
Figure 8. The tidal radius is marked by a horizontal black line. 

  
F igure 13. Capture Distr ibution over rp vs. v  

v  in 
which capture can occur is greatly increased. Also, the probability of collision is much greater 
just above the tidal radius, as can be seen by the concentration of green data points. Again, two 
dimensional simulations exhibited the same trends.  

While these results show that capture is possible with the candidate binary asteroid, the orbits 
 the 

data presented in Section 5, we see that capture is possible within the Hill sphere with asteroids 
larger than the chosen candidate asteroid. However, these larger non-near-Earth binary asteroids 
would be much more difficult to reach, and steering them onto an orbit with a close approach to 
the Earth would be much more difficult compared to a near-Earth binary asteroid. 

 
8. Extended Body Effects 

 
While some binary asteroid members can be nearly spherical, it is also possible for them to 

have elongated shapes. To convey a more accurate dynamic relation between non-spherical 
binary members, a higher order gravitational potential field was implemented into the model. 
Prior to implementing this gravitational field model, only point mass gravitational field models 
had been used to represent the gravitational interaction of the binary. The extended body 
approach offers a detailed description of the gravitational interaction between the two bodies of 
the binary by taking into account the rotation and physical shape of the larger asteroid. 

25(shown in Equation (3)) was chosen because it 
added the desired degree of precision, without incorporating unnecessary complexity into the 
model. In addition, an axially symmetric geometry was chosen so that the physical shape of the 
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body could be varied and to simplify the mathematical description of the potential without 
compromising the insight gained from the higher order approximation. 

 
2 2

3 2 2( ) 1 3 1 3
2 xx yy

Gm G x yV r I I
r r r r

 (3) 

Here, Ixx and Iyy are the principal moments of inertia and x and y are the distances between the 
two asteroids in the body fixed principal axis frame of the larger member.  

25,000 simulations using this new gravity potential were conducted in two dimensions (so  
=  = 0) using the candidate asteroid. To vary the shape of the larger asteroid, the radius of the 
asteroid was calculated as if it were spherical. Then this radius was multiplied by stretching 
factors sx and sy in the x and y directions of the body fixed frame to create an ellipsoidal shape, as 
shown in Figure 14. 
 
  

 
 
 

 
 

 
 
 
 
 
 
 
 
 

An angle, , giving the initial orientation of the larger member was also chosen. The new 
variables were chosen using the Latin hypercube method in the ranges sx  [-0.9,0.9], sy  [-
0.9,0.9], and   [0,2 ]. Figures 15-18 show the probability of capture and resulting semi-major 
axes as functions of v  and rp for the larger and smaller binary members. The overall trends seen 
in these plots agree with those seen in the previous section. Thus, treating the larger binary 
member as an extended body has little effect on capture. 
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F igure 15. Probability of Capture as a Function of the System Variables for Larger Binary 

Member . (a) V elocity at Infinity, (b) C losest Approach to the Earth 

  
F igure 16. Probability of Capture as a Function of the System Variables for Smaller Binary 

Member . (a) V elocity at Infinity, (b) C losest Approach to the Earth 
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F igure 17. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 
Variables for Larger Binary Member . (a) V elocity at Infinity, (b) C losest Approach to the 

Earth 

  

F igure 18. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 
Variables for Smaller Binary Member . (a) V elocity at Infinity, (b) C losest Approach to the 

Earth 
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9. Effects of the Moon 
 

50,000 two dimensional simulations were also conducted with the effect of the moon 
included. When the binary asteroid did not have a close approach with the moon, the moon 
caused a small change in the phase of the binary asteroid as it passed by the Earth. Capture is 
very sensitive to this phase. However, the overall statistical data presented earlier was unchanged 
when the binary asteroid did not have a close approach with the moon.  

When the asteroid did have a close approach with the moon, i.e. ent
sphere, which as a radius of approximately 6x104 km, the moon had an outstanding effect on the 
binary asteroid pair. The asteroids that had close approaches to the moon were sometimes 
disrupted and one member was captured on an orbit contained with
some instances, the binary was not disrupted, and both members were captured on permanent 
orbits within the Hill sphere. Other simulations in which the binary asteroid had a close 
approach with the moon did not result in capture. This phenomenon resulted in much higher 
probabilities of capture over the ranges of v  and rp. The captured, but undisturbed binary 
asteroid result suggests that this mechanism could also work for a single asteroid. 

Figures 19 and 20 show the probability of capture as functions of v  and rp for the larger and 
smaller asteroids with the effects of the moon included. 

  
F igure 19. Probability of Capture as a Function of the System Variables for Larger Binary 

Member . (a) V elocity at Infinity, (b) C losest Approach to the Earth 
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F igure 20. Probability of Capture as a Function of the System Variables for Smaller Binary 

Member . (a) V elocity at Infinity, (b) C losest Approach to the Earth 

Figures 21 and 22 show the resulting semi-major axis of captured members as functions 
of v  and rp for the larger and smaller asteroids. 

  
F igure 21. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 
Variables for Larger Binary Member . (a) V elocity at Infinity, (b) C losest Approach to the 

Earth 
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F igure 22. Resulting Semi-major Axis of Captured Asteroids as a Function of the System 

Variables for Smaller Binary Member . (a) V elocity at Infinity, (b) C losest Approach to the 
Earth 

Figure 23 shows a single asteroid being captured with via a flyby of the moon. Since the 
captured asteroid is much less massive than the Earth and the moon, this system is a case of the 
restricted circular three body problem. The dynamics governing this three body system are much 
simpler than those governing the binary-Earth three body system, since the motion of the 
asteroid has a negligible effect on the moon and the Earth.  A great deal of work has been done 
on the restricted circular three body problem which could be applied to this system26, and 
analytical solutions for the initial conditions needed for capture may be obtainable. Further 
investigation must be undertaken to fully understand this moon assist phenomenon.  The asteroid 
in Figure 23 has a velocity at infinity of v  = 1000 m/s, which is much higher than the v  
considered for binary exchange earlier. This v  is comparable to some actual v  of near-Earth 
asteroids11. 
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F igure 23. Asteroid Capture via a Moon F lyby (Movie available at 

http://www.youtube.com/watch?v=6PWwtMnhd0A) 

  

10. Conclusions 
 

A parametric study of binary-Earth encounters was conducted, and the results showed that 
the total binary mass and the approach velocity were the two dominant parameters affecting 
capture. This led to the choice of 1999 HF1as a candidate near-Earth binary asteroid for capture, 
due to its large mass. Simulations with the candidate asteroid showed that while capture is 
possible, it only occurred at low v
sphere. Non-near-Earth binary asteroids with larger masses than the candidate asteroid could be 
captured within the Hill sphere. Treating the larger member of the candidate binary as an 
extended body had little effect on capture. Including the moon in the simulations allowed for 
capture within the Hill sphere when the binary asteroid had a close approach with the moon.  
Work on the restricted three-body problem suggests this moon-assisted Earth capture mechanism 
will work for single asteroids of nearly any size.   

In addition to assessing the feasibility of intentional asteroid capture, this work also suggests 
that the natural capture of a moon through binary exchange, as has been suggested for Neptune 
and Jupiter, is very unlikely, since the near-Earth binary asteroids are too small for binary 
exchange to be successful.  However, a close encounter between a single near-Earth asteroid and 
the moon could lead to the natural capture of another moon.  Future work could be directed 
toward understanding this moon assist phenomenon and applying it to a single near-Earth 
asteroid. Work could also be done on the feasibility of steering a non-near-Earth binary asteroid 
onto an orbit with a close approach with the Earth 



25  
  

11.  Acknowledgement 
 
We would like to thank Dr. Shane Ross for his guidance and suggestions as he served as our 

project supervisor. We are also gracious for funding provided by the Virginia Space Grant 
Consortium and the Department of Engineering Science and Mechanics. We would finally like to 
extend thanks to Dr. Marie Paretti, Dr. Jack Lesko, our Engineering Science and Mechanics 
classmates, and the Laboratory for Interdisciplinary Statistical Analysis (LISA) at Virginia Tech, 
particularly Nels Johnson and Kelly Geyer, for their useful input and advice. 
  
 
References 
 

1. 
The Astronomical Journal, 124, 3404-3423. 

 
2. 

Space Science Reviews, 114, 407-421. 
 

3. Brown, L., 2008, Plan B 3.0, W.W. Norton , New York, NY. 
 

4. Space Policy, 12, 193-201. 
 

5. Lewis, J., 1997, Mining The Sky: Untold Riches F rom The Asteroid, Comets, And 
Planets, Addison-Wesley Publishing Company, Boston, MA. 
 

6. 
Journal of Geophysical Research, 99, 129-141. 
 

7. Journal of the British Interplanetary 
Society, 57, 301-305. 
 

8. -Earth 
Acta Astronautica, 41, 637-647. 

 
9. 

Asteroid Resources 73, 49-66.  
 

10. 
Acta Astronautica, 

59, 77-83. 



26  
  

 
11. Hasnain, Z., Lamb, C., and Ross, S. -

preprint. 
 

12. Comparing Mass Driver and Disperser concepts for non-nuclear 
Journal of the British Interplanetary Society, 58, 310-315. 

 
13. Gaspar, H., Winter, O., and Neto, E, 2011

Configurations of Binary- Monthly Notices of the Royal Astronomical Society, 
415, 1999-2008. 
 

14. -Body Capture of Irregular 
Sate Icarus, 208, 824-836. 
 

15. -
Nature, 441, 192-194. 

 
16. Nature, 441, 162-163. 

 
17. 

Annual Review of Astronomy and Astrophysics, 45, 
261-295. 
 

18. 
The Astronomical Journal, 133, 1962-1976. 

 
19. 

Mathematical Problems in Engineering, 897570. 
 

20. 
Astronomy and Astrophysics, 452, 1091-1097. 

 
21. y Resonance 

Icarus, 183, 362-372. 
 

22. Icarus, 190, 250-259. 
 

23. Press, W., Teukolsky, S., Vetterling, W., Flannery, B., 1992, Numerical Recipes in 
Fortran 77: The Art of Scientific Computing, pp. 718-725, Cambridge University Press, 
New York, NY. 



27  
  

 
24. 

Technometrics, 21, 239-245. 
 

25. Schaub, H. and Junkins, J., 2009, Analytical Mechanics of Space Systems, 2nd edition, pp. 
541-545, American Institute of Aeronautics and Astronautics, Reston, VA. 
 

26. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D., 2008, Dynamical Systems, the Three-
Body Problem and Space Mission Design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



28  
  

Appendix 1. Near-Earth Binary Asteroid Data 
 

Binary  
Asteroid 

O rbital Semi-
major 

 Axis (km) 
Mass of  

Body 1 (kg) 
Mass of  

Body 2 (kg) 
Total Mass 

(kg) 
Mass Ratio 

M1/Mtot 

      Apollo 
 

7.71732E+12 662679700.4 7.71799E+12 0.999914138 
Sisyphus 

     Dionysus  4 5.30144E+12 42411500823 5.34385E+12 0.992063492 
Sekhmet 1.5 1.5708E+12 42411500823 1.61321E+12 0.973709834 

Ishtar 2.7 2.71434E+12 1.9635E+11 2.91069E+12 0.932541824 
1998 PG 1.5 1.14511E+12 61738578828 1.20685E+12 0.948843166 
1991 VH  3.6 2.71434E+12 1.43139E+11 2.85747E+12 0.949907236 
Didymos  1.1 6.6268E+11 7717322354 6.70397E+11 0.98848843 
1998 RO1 1.4 8.04248E+11 86192736044 8.9044E+11 0.903202134 
1999 KW4 2.5 3.30966E+12 1.18889E+11 3.42855E+12 0.965323912 

Hermes  1.2 3.39292E+11 2.47344E+11 5.86636E+11 0.578368999 
1999 DJ4 0.7 67347892511 7717322354 75065214865 0.897191764 
2001 SL9 1.5 8.04248E+11 16725839288 8.20974E+11 0.979626823 
1994 CC 

 
4.3138E+11 1570796327 4.32951E+11 0.996371882 

1999 HF1 6 6.73479E+13 8.04248E+11 6.81521E+13 0.98819923 
2001 SN263 

 
3.0918E+13 1.5708E+12 3.24888E+13 0.951651114 

1990 OS 0.7 42411500823 143138815.3 42554639639 0.996636352 
2003 YT1 3.2 1.5708E+12 9160884178 1.57996E+12 0.994201815 
1996 FG3 2.8 5.30144E+12 1.52895E+11 5.45433E+12 0.971968151 

2000 DP107 2.9 8.04248E+11 56449707596 8.60697E+11 0.934413993 
2002 CE26 4.7 6.45026E+13 42411500823 6.4545E+13 0.999342916 
1994 AW1 2.4 1.5708E+12 1.73718E+11 1.74451E+12 0.900420677 
1994 XD 

 
3.39292E+11 5301437603 3.44593E+11 0.984615385 

1998 ST27 
 

8.04248E+11 2714336053 8.06962E+11 0.996636352 
2000 CO101 

 
2.20867E+11 143138815.3 2.2101E+11 0.999352341 

2000 UG11 0.5 27608316240 5301437603 32909753843 0.838909837 
2002 BM26 

 
3.39292E+11 1570796327 3.40863E+11 0.995391705 

2002 KK8 
 

1.9635E+11 1570796327 1.9792E+11 0.992063492 
2003 SS84 

 
2714336053 339292006.6 3053628059 0.888888889 

2004 DC 
 

42411500823 339292006.6 42750792830 0.992063492 
2005 AB 3.8 1.07741E+13 1.52895E+11 1.0927E+13 0.986007576 

2005 NB7 0.9 1.9635E+11 12566370614 2.08916E+11 0.939849624 
2006 GY2 0.6 1.00531E+11 804247719.3 1.01335E+11 0.992063492 
2006 VV2 

 
9.16088E+12 1.9635E+11 9.35723E+12 0.979016283 

2007 DT103 0.5 42411500823 1570796327 43982297150 0.964285714 
2008 BT18 
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Appendix 2. The G ragg-Bulirsch-Stoer Numerical O D E Solver 
 

The Gragg-Bulirsch-Stoer method of numerical integration is one of the best known ways 
to efficiently compute an accurate approximation of the solution of a system of ordinary 
differential equations1.  Although many modifications can be made to improve the method, the 
explanation below provides the general idea of the method.   

Consider the first order autonomous ordinary differential equation ' ( )y f y  with initial 
condition 0( )y a y that we would like to solve numerically on some domain [ , ]t a b .  We 
begin by dividing the domain [ , ]a b  into N subintervals each of length H.  Now consider the first 
subinterval [ , ]a a H .  We first divide this subinterval into 1 2n  subintervals each of length 

1 / 2h H .  Beginning at ( )y a , we apply the modified midpoint rule to obtain a numerical 
approximation of ( )y a H .  The modified midpoint rule is gives by Equation 1. 

 

0

1 0 0

1 1

1

( )
( )

2 ( ) 1,2,... 1
1( ) [ ( )]
2

i i i

n n n

y y a
y y hf y

y y hf y i n

y a H y y hf y

 (1) 

Figure 1 shows an example of the modified midpoint method applied using 2 
subintervals.   

  
F igure 1 

We now make a plot of ( )y a H  vs. h .  The idea is to fit curves to our solutions on this 
plot and extrapolate them back to 0h , which corresponds to taking infinitely many 
infinitesimal time steps.    Figure 4 shows the ( )y a H  vs. h  plot with the point obtained using 

1 / 2h H .  Fitting a curve to this point provides a straight line passing the point. 
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F igure 2 

 
Next, we apply the modified midpoint rule on the interval [ , ]a a H  again; however, the 

interval is now divided into 2 4n  subintervals each of length 2 / 4h H .  We now have a better 
approximation of ( )y a H , which is shown in Figure 3.   

  
F igure 3 

Figure 4 shows this point added to the ( )y a H  vs. h  plot and a linear interpolation of 
the two points.   
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F igure 4 

Our goal is to extrapolate these fitted functions back to 0h  to obtain a very accurate 
approximation of ( )y a H .  As can be seen in Figure 4, there is a large discrepancy between the 
value obtained at 0h  for the function interpolating 1 / 2h H  and the function interpolating 

both 1 / 2h H  and 2 / 4h H .  Thus we perform another iteration, this time with 3 8n , so that 

3 / 8h H .  We continue to do this until the current interpolating function and the previous 
interpolating function agree at 0h  to within some tolerance.  Figure 5 shows the method 
continued up to 4 16n , so that 4 /16h H .   

  
F igure 5 

Figure 6 shows the interpolating functions for each set of data.   
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F igure 6 

A horizontal line interpolates the point corresponding to 1h , a linear line for 1h  and 2h , a 

quadratic polynomial for 1h , 2h , and 3h , and a cubic polynomial for 1h , 2h , 3h , and 4h .  The 
cubic polynomial and the quadratic polynomial seem to agree well at 0h .  Figure 7 shows a 
magnified view of the cubic and quadratic polynomials near 0h .   

  
F igure 7 

If the difference at 0h is less than some specified tolerance, then this value is accepted 
to be ( )y a H .  If the difference is greater than the tolerance, then another iteration is 
performed with 5 32n  and 5 / 32h H , and so on.  Once the difference is below the tolerance 

and a solution has been reached, this solution is used as 0y  on the next interval of step size H.  
This process is continued until the solution at ( ) ( )y a NH y b  is reached. 

The advantage of this method over other algorithms is that large step sizes H can be used 
and an accurate approximation can still be obtained.  These large step sizes greatly decrease the 
computing time needed to compute the solution of the ordinary differential equation.  Also, this 
method provides a much more accurate solution than other methods, such as the fourth order 
Runge-Kutta Method.  If k is the number of times the modified midpoint method is applied over 
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each interval of length H (i.e. kn ), then the method has a global error of order H2k-1.  Just a few 
iterations over each interval of length H can produce a solution of very high order. 

One improvement that can be made is to adjust the large step size H after each time step.  
Formula (2) can be used to automatically adjust the step size based upon the tolerance and the 
error obtained during the previous iteration. 

 
1

2 1

1

k

i i
tolH H
err

 (2) 

Using this formula increases the time step in areas of the solution where convergence is 
reached quickly and decreases the time step in areas of the solution where convergence occurs 
slowly.  This modification greatly increases the accuracy, stability, and efficiency of the 
integrator. 
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