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Ridges in the state space distribution of finite-time Lyapunov exponents can be used to locate
dynamical boundaries. We describe a method for obtaining dynamical boundaries using only tra-
jectories reconstructed from time series, expanding on the current approach which requires a vector
field in the phase space. We analyze problems in musculoskeletal biomechanics, considered as
exemplars of a class of experimental systems that contain separatrix features. Particular focus is
given to postural control and balance, considering both models and experimental data. Our success
in determining the boundary between recovery and failure in human balance activities suggests this
approach will provide new robust stability measures, as well as measures of fall risk, that currently
are not available and may have benefits for the analysis and prevention of low back pain and falls
leading to injury, both of which affect a significant portion of the population. © 2010 American
Institute of Physics. �doi:10.1063/1.3267043�

The identification of frontiers between qualitatively dif-
ferent kinds of behavior in a dynamical system is impor-
tant in many applications. Increasingly, systems of inter-
est are determined not by analytically defined model
systems, but by noisy time series data sets resulting from
experiments or complex simulations. Recently, the con-
cept of Lagrangian coherent structures (LCSs), ridges in
the state space distribution of finite-time Lyapunov expo-
nents (FTLEs), has been used to locate these dynamical
boundaries. The current approach to finding these struc-
tures requires a vector field in the state space at each
instant in time. In this paper, we demonstrate a method
that uses only trajectories reconstructed from time series.
To demonstrate this approach, we analyze problems in
musculoskeletal biomechanics, considered as exemplars
of a class of experimental systems that contain bound-
aries which have gone largely ignored, despite their im-
portance for determining possible behaviors and the re-
lationship between them.

I. INTRODUCTION

A challenging and fundamental goal that remains in dy-
namical systems theory is to find dynamical structure in re-
alistic systems of interest, systems defined not only by ana-
lytical models but also systems given by noisy data from
experiments or large-scale simulations. The goal of finding
structure fits into the larger context of phase space transport,
a unified mathematical description of dynamical processes
which can be applied to a wide range of physical phenomena
across many scales.65,9

In the phase space transport problem, one identifies fron-
tiers between regions of qualitatively different behavior, e.g.,
a boundary separating safety and failure regions of a me-
chanical or biomechanical system, as depicted schematically
in Fig. 1�a�. We contend that the locations of these bound-
aries or separatrices can be found by extracting information
contained within time series data from observations obtained

from experiments. Rather than finding an average value of
the Lyapunov exponents over phase space, as traditionally
done in time series analysis, one can generate a Lyapunov
exponent field, quantifying the trajectory sensitivity at differ-
ent phase space locations, as shown in Fig. 1�b�. This per-
spective can lead to a more thorough understanding of pos-
sible system behaviors, as the sensitivity field is used to
identify phase space boundaries.

While the determination of separatrices is well devel-
oped for some domains, such as analytically known models
of low dimensionality, there are many other domains where
dynamical boundary identification will be fruitful, but has
yet to be tried. Data-rich areas like biology, climate, and
economics hold great potential.

In this paper, we focus on examples from musculoskel-
etal biomechanics, specifically the study of human balance
control while sitting, standing, or walking. We demonstrate
the possibility of determining a “threshold of stability” or
recovery envelope—the set of states separating balanced
states from falling states, that is, the boundary of a basin of
stability—from experimental time series data.58,61 Specifi-
cally, we find separatrices in time series data as ridges of a
sensitivity field, as depicted in Fig. 1�b�. Although one-
dimensional ridges in a two-dimensional phase space are
shown, the concept generalizes to higher dimension, where
the ridge corresponds to a codimension one manifold in
phase space. Previous research on time series analysis has
focused on determining whether the dynamics comes from
chaotic deterministic processes or noise.11,16,48 But there is
more information to be found in the data—namely, the struc-
ture and interconnectedness of the phase space as determined
by boundaries between qualitatively different kinds of be-
havior.

To find behavioral boundaries, we borrow techniques
originally developed for the analysis of fluid
flows.28,24–27,52,38 LCSs �Ref. 28� are phase space boundaries
which are defined as the local maxima �technically, ridges� in
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a particular example of a sensitivity field: the FTLE field.52,38

In general, LCSs are found by generating a FTLE field from
phase space trajectories of the system, the first step in the
boxed portion of Fig. 2. The trajectories are usually obtained
by numerically flowing initial conditions under the numeri-
cally or analytically known vector field of the system, e.g.,
fluid flows inferred from particle image velocimetry �PIV�.
However, in many experimental settings, such as musculosk-
eletal biomechanics, only a few measured variables are pro-
duced �see Fig. 2�, not the underlying dynamical vector fields
which generate the measurements. Furthermore, it is some-
times the case that one can only measure the sensitivity of
some subset of variables with respect to some other subset,
which technically would not fit within the existing LCS
framework, but which evidence suggests still can reveal im-
portant dynamical boundaries.57

Separatrices found via LCS methods have previously
been used to analyze a handful of nonfluid dynamical sys-
tems, including analytical chemical models1 and low degree
of freedom �DOF� mechanical systems.13 But little work has
been done to determine phase space boundaries from experi-
mental time series data.61,58 Musculoskeletal biomechanical
experiments commonly generate data in this form, that is,
measured time histories of configuration space variables,
e.g., position and orientations of various limbs.

A few examples of biomechanical systems are described
below, along with hypotheses regarding dynamical bound-
aries.

A. Balance recovery: Standing and falling

In biomechanics, a separatrix or recovery envelope ex-
ists between standing and falling, i.e., standing with postural
sway is a distinctly different type of motion from falling.
During standing, the body remains in the vicinity of an equi-
librium position and may be characterized as dynamically
stable over a suitable finite-time horizon. Compare this mo-
tion to falling where the body rapidly diverges from the vi-
cinity of the equilibrium position at an increasing velocity. If
one allows an experimental subject to take a step during fall
recovery, another boundary will develop. Now three states
exist: standing, recovering from a fall with one step, and
falling. Each type of motion is divided from the other by a
separatrix. Extending this idea, a state space diagram with
multiple fronts may be generated.

Studies of bipedal stability date back at least 40 years
with the conception of the zero moment point finding appli-
cations in walking robots.64,63 Other studies have investi-
gated the range of forward and backward lean that can be
attained while maintaining an upright posture without
stepping.67,40,35 These studies considered the system to be
quasistatic where stability is controlled by muscle strength,
base of support, and the location of the center of mass
�COM�. By analyzing the results of these studies, a stable
region may be defined in one state space dimension �posi-
tion� based on the above parameters. Pai et al. expanded this
work to two dimensions by including velocity in his math-
ematical models45,30 but only a small portion of state space
was evaluated. Yang, Pai, and others investigated the contri-
bution of velocity for maintaining balance during gait.70,72,71

With the exception of Pai’s work, previous work has consid-
ered the separatrix in the configuration space rather than
�correctly� in the state space; a conceptual problem which
has been dealt with in related work on transition state
theory in both chemistry and celestial mechanics
contexts.34,31,21,19,9,10,20
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FIG. 1. �Color online� Detecting dynamical boundaries from measured data. �a� Schematic showing two example trajectories, both of which start in the stable
region and end in the unstable region. By analyzing the motion of points along the trajectory appropriately, we can find the boundary or recovery envelope
between stable and unstable �i.e., failure� motions. The divergence between two points �b and c� on opposite sides of a recovery envelope separatrix is larger
than the divergence of points on the same side �pairs �a, b� and �c, d��, which tend to move together over short times. �b� An observable separatrix forms from
simulated experimental trials of the wobble chair. The separatrix is found as a LCS, i.e., a ridge in the FTLE field.

Vector
Field Trajectories FTLE

Field LCS

FIG. 2. Flowchart depicting how separatrices �as LCSs� are traditionally
determined. The underlying vector fields are unavailable in musculoskeletal
experiments; only the resulting time series �i.e., trajectories� are available.
Therefore we must consider an algorithm that starts with trajectories �the
boxed steps� while assuming that trajectories were generated by a, perhaps
unknown, vector field.
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B. Torso stability: Assessed with wobble chair

A comparable problem to balance recovery in standing
postural sway is the challenge of maintaining torso stability.
In this case, a separatrix exists delineating stable torso sway
from unstable and potentially injurious motion. One can
study torso stability using an experimental apparatus known
as the wobble chair, shown schematically in Fig. 3. Torso
stability is necessary to avoid large deformations in the lum-
bar spine and its loss is often associated with low back injury
and pain.22,5 We propose to extract this separatrix from ex-
periments. Preliminary results from a reduced order model
which captures the essential features of the experimental data
suggest this is possible.

C. Stability in walking versus falling

The computation of FTLEs from experimental data has
been used before in musculoskeletal biomechanics, particu-
larly to quantify local dynamic stability during locomotion.12

However, separatrices between dynamically stable walking/
running can also be evaluated using the methods proposed
herein.

For example, a boundary or frontier exists in state space
between stable walking and falling, as shown in Fig. 4 �pre-
liminary results in Ref. 43�. During walking, the body re-
mains within a certain limited domain of state space and may
be characterized as locally dynamically stable. Beyond this
stable region, dynamic stability cannot be maintained by
simply making minor corrections to the step length, gait
speed, or foot location.

We suggest that the identification of this boundary, the
recovery envelope, is critical to the assessment of fall risk.
We hypothesize that an individual’s risk can be measured by
considering how close in phase space his trajectory comes to

his recovery envelope, as depicted schematically in Fig. 4.
This framework provides a means to quantify the effects of
various factors on fall risk �age of individual, load weight,
and distribution� as well as the effectiveness of training on
reducing fall risk.

D. Organization of paper

In this paper, we develop a framework for the detection
of dynamical boundaries and, where appropriate, phase space
transport related to those boundaries, in the field of muscu-
loskeletal biomechanics. Although biomechanics is our fo-
cus, we consider the methods applicable to a larger class of
amenable observational and experimental systems. The orga-
nization of the paper is as follows. The mathematical analy-
sis tools used to detect dynamical boundaries from data are
described in Sec. II; in particular, we describe a new extrac-
tion and characterization algorithm. In Sec. III, we describe
some models and experiments for postural stability with par-
ticular attention to the wobble chair, an experimental appa-
ratus used to obtain postural data. One and two DOF models
are described and their dynamical boundaries analyzed using
the novel extraction and characterization procedure. A recent
effort to extract the basin of stability volume from experi-
mental data is also summarized. Finally, in Sec. IV we pro-
vide some concluding comments and directions for future
development and speculate on the use of measured recovery
envelopes as a new tool in risk assessment.

II. DETECTING DYNAMICAL BOUNDARIES

A. Sensitivity analysis and the finite-time Lyapunov
exponent field

In this section, we briefly review some mathematical
preliminaries regarding sensitivity of trajectories �following,
e.g., Refs. 46 and 66�. Suppose we are given a reference
trajectory x�t� through phase space going from x0 at time t0

to x1 at time t1. Although the phase space for most mechani-
cal systems is a non-Euclidean manifold �e.g., a tangent
bundle of a configuration space�, we assume that the effect
on measuring sensitivity is negligible and therefore take our

θT

θS

h

FIG. 3. The wobble chair is an unstable sitting apparatus designed to isolate
the movement of the low back to determine torso stability. �Figure is
adapted from Fig. 1 in Ref. 6 and Fig. 1a in Ref. 57.� The angle �S is the
angle the seat makes with the horizontal and �T is the angle the torso makes
with the vertical.

state space recovery envelope

dmin

kinematic variability

recovery
failure

FIG. 4. Recovery envelopes: a new tool in the evaluation of fall risk. Shown
schematically, the boundary between the states corresponding to stable
walking �recovery� and falling �failure� is given by a recovery envelope
�thick line�. We assume the state space is equipped with a metric and suggest
that the minimum state space distance between a subject’s kinematic vari-
ability and their recovery envelope �dmin� can be used as a measure of their
falling risk.
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phase space as Euclidean �which has some justification; see,
e.g., Ref. 37�. We assume the trajectory evolves under the
dynamical equations of a time-independent �autonomous�
system in first-order form,

ẋ = f�x�, x � Rn. �1�

This equation describes a vector field. The sensitivity of the
reference trajectory is discussed below.

Let trajectories of the system �1� with x�t0�=x0 be de-
noted by ��t ;x0�. In other words, the object � :R�Rn→Rn

denotes the flow map of the dynamical system �1�, mapping
a state x0 along its trajectory to the resulting state x at time t.

Consider a second trajectory that starts slightly away
from the reference trajectory ��t ;x0�, i.e., starts from the
perturbed initial vector x0+�x0 at time t0. As the trajectories
evolve, the vector displacement �or perturbation vector�

�x�t� = ��t;x0 + �x0� − ��t;x0� �2�

will also evolve, as illustrated in Fig. 5�a�. For our purposes,
the “second trajectory” might be the result of another experi-
mental trial or another portion of the same trajectory sepa-
rated by a sufficient amount of time to avoid a substantial
autocorrelation.

The linear relationship between small initial perturba-
tions and perturbations at some time t is

�x�t� = ��t;x0��x0, �3�

where ��t ;x0�=���t ;x0� /�x0 is the n�n state transition ma-
trix �also known as the fundamental matrix; see, e.g., Ref.
46�. The state transition matrix can be viewed as a deforma-
tion gradient in the phase space �see Fig. 5�b��. The matrix
��t ;x0� contains information about expansion and contrac-
tion as well as the rotation of an initially small collection of
states, starting near x0, due to the locally deforming nature of
the flow. Taking the vector norm on Rn of Eq. �3�, the size of
the final perturbation vector at time t is given by

��x�t�� = ��x0
����t;x0����t;x0���x0, �4�

where A� denotes the transpose of the matrix A, and the
perturbations are considered as column vectors. Within Eq.
�4�, we see the symmetric matrix

� = ��t;x0����t;x0� , �5�

which is the finite-time right Cauchy–Green deformation
tensor.52 The matrix � is a rotation-independent measure of
deformation; it gives the square of the local change in dis-

tances due to deformation.62,18 Since � is a symmetric, posi-
tive definite matrix, it has n real, positive eigenvalues.56,38

One can associate with the point x0 a maximum FTLE
given by

��x0� =
1

�T�
ln��max��� , �6�

where T= t− t0 is the finite duration over which expansion is
measured �i.e., the horizon time� and �max��� is the maxi-
mum eigenvalue of � with the corresponding �normalized�
eigenvector êmax�x0�.52 In other words, if �x0 is along
êmax�x0� at time t0, then maximum stretching occurs �over the
horizon time� and the length of the perturbation vector be-
comes ��x�t��=e��x0�T��x0�, where t= t0+T.

Each point x of the phase space has a FTLE value asso-
ciated with it, effectively representing the stretching over a
time T of a small portion of phase space centered at x, as in
Fig. 5�b�. Therefore, we refer to the object ��x� as the maxi-
mum FTLE field, or more informally as the FTLE field
�where the maximum FTLE is understood�. It is important to
emphasize that this is a scalar field rather than a single scalar
value obtained by averaging over phase space. The FTLE
field, � :Rn→R, can be viewed as a real-valued graph over
the phase space. Topological features of this graph, in par-
ticular ridges, are interpreted as having dynamical signifi-
cance as phase space transport barriers52 which act as a skel-
eton organizing the overall phase space transport structure.
Before we discuss how the ridges are extracted, we discuss
how to obtain a FTLE field in the absence of an explicitly
known vector field, i.e., in the absence of known evolution
Eqs. �1�.

B. Generating the FTLE field from trajectories

We have developed a method to construct a FTLE field
using only trajectory data.58 This approach eliminates the
need for the generating vector field, which is generally un-
available in a biomechanics environment. Typically in bio-
mechanics experiments a finite number of body segments are
tracked and stored as time series data. Some of these tech-
niques include measuring of kinematic movement trajecto-
ries using �a� three-dimensional �3D� video motion analysis,
�b� accelerometer data, �c� gyroscopic data, or �d� some com-
bination.

1. State space reconstruction
Since the system under study is a mechanical system, we

take the measured position and/or angular coordinates as a
function of time ���t�� and numerically construct the time

derivatives ��̇�t��. We take the n-dimensional space of

x= �� , �̇� as the reconstructed state space.44,42,23 However, we
note that the method of using a FTLE field to find a separa-
trix is not tied to any particular means of state space recon-
struction. For instance, time-delay reconstruction,15,32,50

which is appropriate for both mechanical and nonmechanical
systems, can also be used.

x0

x0 + δx0

δx(t)
φ(t;x0)

φ(t;x0 + δx0)
δx0 x0

φ(t;x0)

σ1(x0)
Initial sphere

is the maximum
expansion rate

FIG. 5. �a� A trajectory ��t ;x0� and a neighboring trajectory ��t ;x0+�x0�.
�b� The state transition matrix is a deformation gradient about the reference
trajectory describing how an initially spherical blob of surrounding states
deforms into an ellipsoid.
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2. Calculating the FTLE field from discrete trajectory
data

The FTLE field is estimated as the rate of separation of
neighboring trajectories. Traditionally, the FTLE for a loca-
tion in state space is found by tracking the evolution of tra-
jectories with initial locations defined by a regular grid.52

However, when a vector field is not available, discrete data
points near the reference point must be selected to estimate
the local separation rate. In order to understand how this is
determined from experimental time series data, consider the
reference trajectory shown in Fig. 6. With a reference point
established, a target location �p1� is identified that is a per-
turbation distance �q from the reference point in state space.
The data point closest to p1 on another trajectory is then
found, n1. The other trajectory can be from either a different
experimental trial or another portion of the same trial sepa-
rated by a sufficient amount of time to avoid a correlation
with the reference point over the horizon time. This process
is repeated for other directions. Using this method, 2n neigh-
bors are found for each reference point corresponding to
positive and negative directions of each dimension of state
space. As multiple nearest neighbors are considered, pertur-
bations are sampled in multiple state space directions which
increase the likelihood of a detected separation lying in the
direction of maximum expansion.

By treating each point in the time series as the reference
point, a FTLE can be calculated for the regions of state space
that are explored by the trajectories. A FTLE field may be
generated by associating each FTLE value with the state
space locations from which it was calculated. This approach
differs from previous methods that averaged the FTLE over
time and state space15,50,11,69 to determine a single scalar
value for the system.

3. Modifying factors
The two major factors influencing the estimate of the

FTLE field are the choice of horizon time T and perturbation
distance �q. In practice, one determines T heuristically by
starting from zero and increasing T until the structure is
observed.52 In many applications the system of interest likely
has a characteristic time scale that could be used. Regarding
�q, we can view this distance as an important coarse-
graining parameter selected to be large enough to overcome
system noise, yet small enough to reveal local features of the
FTLE field. Preliminary parameter sensitivity analysis shows
this method to be relatively insensitive to the value of �q;

that is, reductions in the value of �q by two orders of mag-
nitude reduced the smoothness of the FTLE field, but did not
change the locations of FTLE ridges. Further research is
needed to establish the proper value of the coarse-graining
parameter, e.g., what range of values is appropriate given a
particular uncertainty environment �i.e., point cloud density
or level of system noise?�. However, separatrices computed
from vector fields have been shown to be robust with respect
to some kinds of noise.25,27 Similarly, our work, described
below in Sec. III, suggests the same is true for separatrices
computed from individual trajectories, making them attrac-
tive for use in experimental data analysis where noise sensi-
tivity is an important issue.4,14,17

C. Extracting and characterizing boundaries
from the FTLE field

A systematic method for not only extracting—but also
characterizing—dynamical boundaries or LCS is useful for
tracking and identifying individual features that may merit
further analysis. Once the FTLE field is available using the
method described above, it can be analyzed as a height field.
The problem of extracting LCS then becomes the detection
of the ridges in this height field. For some systems, FTLE
ridges can be determined by visual inspection of the field.
For other systems, the FTLE can be very complicated, war-
ranting automated methods. Different approaches have been
used to highlight and illustrate ridges in FTLE fields; these
methods focus on visualization of the ridge.39,53 Here we
adopt the method proposed by Ref. 51 where the ridges are
detected and categorized in terms of their strength per unit
length.

1. LCS detection algorithm
Consider initially a FTLE field over a two-dimensional

phase space. A point x belonging to a one-dimensional ridge
of the FTLE field has to satisfy the following set of equa-
tions:

�min�x� 	 0, � ��x� · vmin�x� = 0, �7�

where �min�x� is the minimum magnitude eigenvalue of the
Hessian matrix �2��x� with corresponding eigenvalue
vmin�x�. These conditions can be interpreted as the first de-
rivative in the direction transverse to the ridge axis is equal
to zero �i.e., a local maximum/minimum� and the second
derivative in the transverse direction is negative �i.e., the
curvature is negative when the field is at a local maximum in
the transverse direction�. The conditions in higher dimension
are given in Ref. 51. The algorithm for detecting and classi-
fying a ridge consists of five steps: scale-space representation
and ridge point detection, dynamical sharpening, connecting
ridge points into ridge curves, choice of best scale, and clas-
sification of ridges �by, e.g., phase space barrier strength�.
The scale-space representation consists of a convolution of
the function ��C2�R2 ,R� with a Gaussian kernel g
�C2�R2 ,R�,

�a�x� = g�x;a� � ��x� , �8�

where a determines the value of the scale and the Gaussian
kernel g�C2�R2 ,R� is given by

Reference Trajectory

Reference Point

Nearest Neighbor
(x3 direction, t=0)

d3(0)

d(ti)

t0

ti
d3(t1)

t1

p3(x1, x2+δq)0

δq

p1(x1+δq, x2)0
p2(x1-δq, x2)0

p4(x1, x2-δq)0

n1

n4

n2

n3

FIG. 6. �Color online� Estimating the maximum FTLE at a location in phase
space by evaluating the growth of perturbation vectors in multiple state
space directions. We make the assumption that the maximum FTLE domi-
nates the evolution of the perturbation vectors.
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g�x;a� =
1

2
a2exp�− 	 �x�2

2a2
� . �9�

This produces smoother images with the parameter a con-
trolling the level of filtering. The points satisfying the ridge
test conditions �7� are collected and they become the initial
condition for the dynamical sharpening step. A ridge acts as
an attractor for the gradient dynamical system,39

dx

ds
= ��a�x� , �10�

where s is the arc length along the gradient lines of �a�x�.
The points accumulated along the ridge axis are then con-
nected. Two points P1 and P2, as in Fig. 7, belong to the
same ridge if they satisfy the following conditions:

�P2 − P1� � d0, �11�

��a�P2� − �a�P1�� � h0, �12�

arccos	 t2 · t1

�t2��t1�
 � �0, �13�

arccos	 t1 · �P2 − P1�
�t1��P2 − P1� 
 � �0, �14�

where t1 and t2 are the eigenvectors corresponding to the
maximum magnitude eigenvalues of the Hessian matrix
�2��x�, which are tangent vectors to the ridge at P1 and P2,
respectively. Equation �11� states that the two points must be
closer than a threshold d0. Equation �12� checks if the differ-
ence in height between the two points is lower than a thresh-
old h0. Equation �13� tests if the angle between t1 and t2 is
smaller than �0. This comes from the assumption that the
ridge curves are continuous and differentiable and therefore
properties change smoothly throughout the curve, in particu-
lar, there should be no sharp corners to the curves. In prac-
tice, the values for �d0 ,h0 ,�0� are determined heuristically
and may depend on a. Finally, Eq. �14� is a check on the
alignment of the vector connecting P1 and P2 with the tan-
gent vector at the point P1. If these four conditions are sat-
isfied points P1 and P2 are considered to be in the same ridge
set, as illustrated in the right panel of Fig. 7.

Once the ridges have been detected they are classified
based on the flux across them �following Ref. 52�,

t · ��

n · �2�n
	t · 	 �n

�t
− Jn

 , �15�

where J is the Jacobian matrix of the velocity field and t
�respectively, n� are unit vectors which are tangent �respec-
tively, normal� to the ridge at the evaluated ridge point. Since
the velocity field is in general unavailable, only the first-
order term of the flux equation �15� is used to measure the
strength,

F �  t · ��

n · �2�n
 . �16�

The strongest ridges have F close to zero, considered both
pointwise and as an average per unit length.

III. SEPARATRICES IN MUSCULOSKELETAL
BIOMECHANICS

A. Postural stability and the wobble chair

Postural stability is essential for biped walking and
standing. In order to achieve an upright posture each compo-
nent of the kinematic chain must be sufficiently stabilized.
Critical components include the ankle, knee, hip, lumbar
spine, and cervical spine. Loss of stability may result in falls,
a leading cause of orthopedic injuries in the elderly which
can begin a chain of medical complications often leading to
death. In addition, falls account for at least 12% of all non-
fatal injuries involving days away from work, and fall acci-
dents account for 11.9% of occupational-related fatalities in
the United States.3 Furthermore, loss of stability in the lum-
bar spine has often been considered a contributing factor to
low back injuries and pain. Low back pain is a common
medical ailment afflicting 80% of the population at some
time in their life.33,49

Mathematical models have been used to study postural
stability during standing.47,67,2,7 People generally use an
ankle strategy to maintain stability during quiet
standing.29,68,40 For movement in the sagittal plane �forward
and backward� the motion may be modeled as a planar in-
verted pendulum with control applied at the ankle joint.
More complex systems that also take into account frontal
plane motion �left and right� may be modeled as an inverted
spherical pendulum, again with control applied at the ankles.

Spinal stability has been studied using an unstable sitting
apparatus.6,36,54,61 In these experiments the participant sits on
the unstable seat and maintains rigidity of the body except
for small movements of the lumbar spine. One such device,
the wobble chair, consists of a seat supported by a central
ball joint �Figs. 3 and 8�. Attached to the seat is a leg rest to
minimize relative movement within the lower body. Stabiliz-
ing springs located at the front, back, left, and right of the
ball joint help support the seat.

B. One degree of freedom model

A one DOF planar inverted pendulum model is appropri-
ate to simulate sagittal motion during quiet standing or a
reduced order model of the planar wobble chair. In both sys-
tems torque is applied at the base to maintain the stability of
the pendulum in the upright vertical position. The math-

FIG. 7. �Color online� Main steps of the algorithm. From the FTLE field
�left panel� the ridge points are calculated and aggregated toward the ridge
axis �central panel�. Thereafter, the points are appropriately connected �right
panel� in order to create continuous curves.
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ematical model we describe is appropriate for both, but we
use parameters applicable for the wobble chair.

1. Sagittal plane standing
During quite standing �no intentional movement�, re-

searchers often investigate motion within the sagittal plane
only. This simplification is done to study the effects of neu-
romuscular control without the added complexity of 3D
movement.

For the case of one DOF quiet standing, force is applied
through the Achilles tendon to plantar flex �push down� the
foot. When larger forces are applied, the center of pressure
�COP� of the ground reaction force moves toward the front
causing a torque about the ankle that accelerates the COM
toward the rear. When small forces are applied, the COP
shifts toward the rear and the COM accelerates toward the
front. During this process the other major joints remain rela-
tively fixed. Thus, control is applied at the ankle to maintain
stability of what is essentially an inverted pendulum.

2. Reduced order planar wobble chair
In order to begin to understand the behavior of the full

order system, a reduced order model was developed for the
wobble chair �see Fig. 9�. In the physical system, the body
pivots at the lumbar spine �L4-L5�, but in this model, motion
is restricted to the sagittal plane and the angle between the
lower body and upper body is fixed. These constraints imply
that the difference between �S and �T is constant. We con-
sider the dynamics of a single angle �, the angle from the
pivot to the COM, measured from the vertical. Stabilizing
springs like those used in the actual wobble chair are in-
cluded in the model. In addition, a limited gain proportional-
derivative control is incorporated which allows the system to
have a stable equilibrium point at the upright vertical posi-
tion. The existence of this stable region was observed in
wobble chair experiments where participants were able to
balance for 30 s in a statically unstable configuration.61

These constraints effectively reduce the system to a two-
dimensional state space, which is a deterministic system plus
noise.

3. One segment, planar model
The equation of motion for the inverted pendulum with

stabilizing springs and limited gain control is calculated us-
ing Lagrange’s equations and written in first-order form,

�̇ = v ,

�17�

v̇ =
1

mh2 ��mgh − kd2�sin � − C��,v� + N�t�� ,

where m, g, h, �, v, k, and d are the mass, acceleration of
gravity, height, rotation angle, angular velocity, spring stiff-
ness, and the distance of the springs from the central ball
joint, respectively. System noise N�t� is a zero mean Gauss-
ian random function. The equation for the limited gain
proportional-derivative control C is given by

C��,v� = Gdv + � Gp� if ��� 	 �cr

pmax otherwise,
� �18�

where Gd is the derivative gain constant, �cr=pmax /Gp is the
smallest angle at which the maximum gain is achieved, Gp is
the proportional gain constant, and pmax is the maximum
torque producible by proportional gain. Physiologically, a
limited gain controller represents the limited muscle strength
of the abdominal and spinal extensor muscles. Noise N�t� is
introduced into the physical system from muscle twitches,
inaccurate motor unit activation, involuntary movements, or
external environmental forces. It is simulated by a zero mean
Gaussian normal distribution with a standard deviation equal
to a given percentage of the gravitational term �mgh�. A
noise frequency of 20 Hz is selected such that it substantially
exceeds the frequency of small oscillations of system �17�
about the inverted equilibrium ��3 Hz�. We use realistic
physical parameters typical of participants performing tests
on the wobble chair �Table I�.

FIG. 8. �Color online� Subject balances on the wobble chair moving the
lumbar region of her torso to maintain stability.

FIG. 9. �Color online� One DOF model for the wobble chair. In the simpli-
fied model the angle between the seat and the torso is fixed and control is
applied at the base. This is an approximation to more complex system where
torso flexion causes rear spring compression and extension causes front
spring compression for effective base applied control.

017507-7 Detecting dynamical boundaries Chaos 20, 017507 �2010�

Downloaded 08 Jan 2010 to 128.173.39.44. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



4. Dynamical boundaries for full and partial sampling
with varying amounts of noise

Ultimately we want a technique that extracts dynamical
boundaries from experimental trials that only sample a small

portion of phase space. But for comparison, we first consider
dynamical boundaries with full sampling. We look at the
sensitivity on a regular grid �200�200� of points in phase
space centered around the origin with a range of
�15° � �15° /s �we use degrees instead of radians for plot-
ting and visualization purposes�. Each of these points is
taken as an initial condition to determine the flow map over
a fixed horizon time T directly from the vector field �17�. The
FTLE is calculated for each point on the interior of the grid
based on the expansion of the state transition matrix. These
results are combined over state space to produce a FTLE
field. The FTLE field was first calculated by flowing time
forward T=3 s.

In Fig. 10, we show the FTLE field and extracted bound-
aries for a no-noise case and several cases of increasing noise
�1%, 2%, and 5%�. From the extracted boundaries, we cal-

TABLE I. Parameter table for one DOF model.

Parameter Value Source

m 69 kg Typical subject
g 9.81 m /s2 Physical constant
h 43.0 cm Typical subject
k 10 900 N /m Wobble chair
d 10.35 cm Value to generate 40% mgh
Gd 1 N m / �rad /s� Calibration parameter
Gp 190 N m / rad Calibration parameter
pmax 14.5 N m Calibration parameter

FIG. 10. �Color online� The FTLE field and detected boundaries �ridges� are shown for a full sampling of phase space for the reduced order wobble chair
model at four values of the noise. The boundary separating the stable and unstable regions of phase space is shown. The boundary has two parts �roughly an
upper and a lower part�, and we give the average flux across each. Each boundary is made up of elements color coded according to the amount of flux across
the element: low flux �higher strength� is lighter, high flux �lower strength� is darker. The solid closed curve in �a� is the theoretical boundary for zero noise.
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culate the area of the basin of stability as well as the average
flux across the boundary. The results are in Table II. The
dashed closed curve in Fig. 10�a� is the analytically com-
puted boundary for zero noise, which corresponds to a het-
eroclinic cycle between the two saddle points in the phase
space.

Random noise slightly perturbs the trajectories as they
evolve making the system no longer deterministic. This has
the potential to have a dramatic effect on the future of a
trajectory. Trajectories near the separatrix may be perturbed
to the opposite side crossing the barrier. Thus, stable trajec-
tories may become unstable and unstable trajectories may
become stable. However, a separatrix still exists despite the
presence of noise. We also considered a noise level of 10%,
but no stable region could be defined. Only one separatrix
was found, going from the upper left to lower right, continu-
ing the trend of Fig. 10.

To give us an idea of what a realistic partial sampling of
the phase space would yield, we considered the following.
Experimental trials on the wobble chair start from rest �at the
origin� and are driven by random force perturbations which
tend to have a destabilizing effect, eventually resulting in a
fall. We considered 20 such independent trials, beginning at
the origin, lasting for 30 s. These simulated trials produce
time-series data, shown overlaid in Fig. 11�a�. The noise
level was set at 1%. These trials are transformed into trajec-
tories in an appropriate state space �Fig. 11�b�� via recon-
struction, as described in Sec. II.

This set of trajectories is used to produce a FTLE field
shown in Fig. 12�a�. Unlike the full sampling of Fig. 10, the
simulated experimental data only contain information about
the portion of state space where the trajectories have ex-
plored. Since the forward dynamic simulation begins at the
phase space origin and is randomly perturbed from this lo-
cation, only trajectories that are initially stable and may be-
come unstable are included. Despite being less complete
than boundaries generated from full grid data, the portion of
the boundary which is sampled is in the same general loca-
tion, as shown by the comparison in Fig. 12�b�. This
provides confidence that partial sampling of the phase
space using experimental trials can be used to detect the
boundaries as well as estimate the differential and average
flux across it.

We note that although 20 independent trials were used
for clarity of illustration, separate work58 indicates that por-
tions of the recovery envelope structure may be identified
with very few trials using this method. This is critical from
the point of view of experiments where tests are limited or
expensive, e.g., the number of falling trials is limited for a
given individual. A part of future work will be to determine
the number of experimental trials necessary to reveal the
desired level of dynamical structural detail.

C. Two degree of freedom model

A two DOF model has been developed for the two seg-
ment planar wobble chair. This model better represents the
true motion of unstable sitting by treating the lower body as
one segment, the upper body as another, and the lumbar
spine �L4-L5� as the joint, as shown Fig. 13�a�. A planar
system is used to reduce the complexity of the results while
still capturing most of the nonlinear behavior. The system is
modeled as a double inverted pendulum, with a two-
dimensional configuration variable �= ��1 ,�2� of the segment
angles, measured with respect to a fixed inertial frame and
increasing counterclockwise, i.e., �1 is measured from the
horizontal and �2 from the vertical �Fig. 13�b��. Notice that
the configuration space is the two-torus T2 and the phase
space is T2�R2, or alternatively, two copies of the tangent
bundle of the circle, TS1�TS1. Since we are concerned with
relatively small motions in the angular configuration vari-
ables, for purposes of FTLE computation we treat the phase
space as Euclidean R4.

A control torque is applied between the two segments
bringing the body into flexion or extension. During flexion,
the lower segment rises in the front and the upper segment
bends forward toward the feet. During extension, the lower
segment drops in the front and the upper segment bends back
away from the feet. Through these dynamic motions the
combined COM of the body only shifts slightly, but the seat
angle changes. When in flexion, the seat is rotated clockwise
increasing the restorative moment of the rear spring provid-
ing a torque that accelerates the COM forward. The reverse
occurs during extension. Thus, active control of the lumbar
spine has the effect of controlling movement at the base of
the double inverted pendulum. Furthermore, the dynamic
movements of the segments have an effect on the motion via
inertial coupling terms.41,55

1. Two segment, planar model
The equation of motion for the planar double inverted

pendulum with stabilizing springs and limited gain control is
calculated using the Lagrangian formulation yielding

M����̈ + C��,�̇��̇ + G��� = ���,�̇� , �19�

where M is the �uniformly positive definite� inertia tensor, C
contains the velocity-dependent terms, G contains the effects
of gravity, and �= �1 ,2� is the torque applied at the segment
joints. The analysis given elsewhere59 yields the matrices M,
C, and G as

TABLE II. Areas and flux of the basin of stability.

Noise level
Area

�deg2 /s� Flux

Analytical 73 0
0% 100 0.45
1% 107 3.4
2% 113 4.2
5% 91 4.7
10% 0 ¯
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M��� = � m1�c1�2 + m2�L1�2 + I1 m2�R���1�L1� · �R���2�c2�
m2�R���1�L1� · �R���2�c2� m2�c2�2 + I2

� ,

C��,�̇� = � 0 m2�R���1�L1� · �R���2�c2��̇2

m2�R���1�L1� · �R���2�c2��̇1 0
� , �20�

G��� = �m1g · �R���1�c1� + m2g · �R���1�L1�
m2g · �R���2�c2� � ,

where mi is the mass of segment i, ci is the vector from joint i to the segment i COM, L1 is the vector from joint 1 to joint 2,
Ii is the moment of inertia of segment i about its COM, g= �0,−g� is the gravitational acceleration, the torque is given by

���,�̇� = �spr − �sk + sd + CPD�
sk + sd + CPD

� = �k1d2 sin �1 − �k2��2 − �1� + k3��̇2 − �̇1� + CPD��1,�2, �̇1, �̇2��

k2��2 − �1� + k3��̇2 − �̇1� + CPD��1,�2, �̇1, �̇2�
� , �21�

the proportional-derivative control is similar to the one DOF system �18�,
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FIG. 11. A time-series data set generated from 20 simulated experimental trials. �a� Time plot shows each trial beginning from the state space origin. �b� The
trials shown as trajectories in phase space.

FIG. 12. �Color online� �a� A portion of a dynamical boundary found by analyzing the FTLE field resulting from the trajectories of Fig. 11. Only portions of
the complete boundary are accessible by this method. The flux for the upper-right and lower-left portions is also shown. �b� A comparison of the dynamical
boundaries from the partial sample �solid� and full-grid data �dotted�.
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CPD��1,�2, �̇1, �̇2� = Gd�̇COM

+ �Gp�COM if ��COM� 	 �cr

pmax otherwise,
� �22�

where �COM is the deviation from vertical of the total COM
with respect to the seat pivot,

�COM = − arctan	 cCOMx

cCOMy

 ,

�23�

cCOM =
m1R��1�c1 + m2�R��1�L1 + R��2�c2�

m1 + m2
,

and the rotation matrices R��i� are given by

R��i� = �cos �i − sin �i

sin �i cos �i
� , �24�

where a prime denotes differentiation of the matrix with re-
spect to its argument. The kinematic and dynamic parameters
used for the simulation are given in Table III. The anthropo-
metric data are from Ref. 8.

Like the previous models, the system was driven by zero
mean Gaussian random force perturbations with a standard
deviation equal to 1% of the gravitational term.

2. Portions of the basin of stability boundaries in two
DOFS

The FTLE field was generated using forward dynamics
simulations for a horizon time T=0.5 s based on a regular
grid of initial conditions �Fig. 14�. Since the LCS is a 3D
surface separating the four-dimensional �4D� phase space
into two distinct regions �stable and unstable�, it is easier to
view planar sections of state space rather than the entire 4D
hypervolume. We verified that the LCS bounds the basin of
stability by comparing with a “brute-force” measure of sta-
bility: we have marked with + those initial conditions which
cross a distant boundary in the unstable region �reaching
large angles of ��1�=300° or ��2�=300° within 30 s�. The
remaining presumably stable initial conditions are marked
with circles. The stable trajectories generally aligned with
the valley in the FTLE field and are well within the basin of
stability boundaries as delimited by the LCS.

D. Determining the basin of stability through wobble
chair experiments

The goal of the methods outlined in this paper is to de-
tect dynamical boundaries from actual experimental data.
Since we were successfully able to obtain a basin of stability
from simulated experimental time series, as just described,
we conducted some preliminary experiments on eight human
participants on a wobble chair in the laboratory, with the goal
of identifying the human torso basin of stability from seated
stability test data.59,61

For the experiments, wobble chair motion was con-
strained to the sagittal plane and two DOFs were measured
within that plane as a function of time �fore-aft movement of
the lower and upper body segments�. With the rates calcu-
lated, we had trajectories in a 4D state space. Using the
above procedure, but scaled to four dimensions, we were
able to measure the basin of stability by detecting the region
enclosed by the 3D recovery envelope. Eight participants
were tested, and the measured 4D volume of the basin of
stability ranged from 252 to 5760 deg4 /s2 with a mean
�standard deviation� of 2190 �1760� deg4 /s2.

These results demonstrate that a basin of stability can be
generated from time series data collected from musculoskel-
etal biomechanics experiments. Further analyses of the basin
of stability, along the lines of the risk assessment mentioned
in Sec. I, are left as future work. Our modest goal is that the
ability to measure the basin of stability may serve as an
additional useful tool to evaluate other balance control prob-
lems for which time series data are available.

TABLE III. Parameter table for two DOF model.

Parameter Value Source/description

m1 27.4 kg Lower body mass
m2 31.8 kg Upper body mass
I1 2.35 kg m2 Lower body mass moment of inertia
I2 4.86 kg m2 Upper body mass moment of inertia
L1x 0.1272 m Lower body segment vector—horizontal
L1y 0.1580 m Lower body segment vector—vertical
L2x 0.000 m Upper body segment vector—horizontal
L2y 0.7179 m Upper body segment vector—vertical
c1x �0.1771 m Lower body COM vector horizontal
c1y 0.0780 m Lower body COM vector vertical
c2x 0.000 m Upper body COM vector horizontal
c2y 0.2736 m Upper body COM vector vertical
g 9.81 m /s2 Acceleration of gravity
k1 10 900 N /m Wobble chair linear spring constant
d 10.35 cm Distance from ball joint to springs
k2 100 N m Torsional stiffness of the spine
k3 0.1 N m s Torsional damping of the spine
Gd 200 N m / �rad /s� Derivative gain
Gp 3�105 N m / rad Proportional gain
pmax 8�104 N m Maximum proportional gain
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FIG. 13. �Color online� �a� Model of a person sitting on the wobble chair.
Components of the lower body contribute to segment one, while compo-
nents of the upper body make up segment two. �b� Simplified model of a
person sitting on the wobble chair. Vectors ci are from joint i to the COM of
segment i, while L1 is the vector from joint 1 to joint 2. The deflection of the
lower body and seat from the balanced configuration is �1 and the deflection
of the upper body from the vertical position is �2. Forces are applied to the
stabilizing springs providing effective base control of the combined COM as
the body pivots at the lumbar spine �L4-L5� during flexion and extension of
the torso.
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IV. CONCLUSIONS AND FUTURE WORK

The extension of separatrix methods to experimental
time series analysis of mechanical and biomechanical sys-
tems provides better means of comparison to analytical mod-
els and gives greater insight into possible—but as yet
unobserved—behaviors based on the determined phase space
structure and interconnectivity. Furthermore, detection of
separatrices dividing regions of failure from regions of safety
will provide new robust stability measures that provide ad-
ditional information over what is currently available. The
methods described herein apply to other areas where nonlin-
ear time series analysis is used to analyze not only mechani-
cal systems but also nonmechanical systems, such as meteo-
rological, financial, psychological, and population
observations. Whereas previous research in time series
analysis using FTLEs has focused only on determining
whether the dynamics comes from deterministic chaos or
noise, we have shown that there may be more information to
be mined from the data. Structure within the underlying de-
terministic system may yield information about phase-space
transport phenomena that is critical to understanding the be-
havior of the system.

A. Recovery envelopes: A new tool in the evaluation
of fall risk?

In biomechanics, determining dynamical boundaries will
be useful in understanding how our neuromuscular reflexes
and the nonlinear behavior of our musculoskeletal system
contribute to stability maintenance during walking and more
general motor control. The identification of these boundaries
will contribute to new procedures using available data to
prevent, diagnose, and treat medical problems. Case in point,
dynamical boundaries may provide robust biomechanical
measures of the risk of falling for a given individual and/or
load-carrying task. We have speculated that an individual’s
fall risk can be accurately measured by how close his or her

state space trajectory comes to the recovery envelope, as
shown schematically in Fig. 4. But future experiments are
needed to test this hypothesis. Finally, we emphasize that the
idea of the recovery envelope is not limited to evaluating fall
risk and could have broader impact if applied to other areas
of health and safety where balance and recovery are in-
volved.
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