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celestial mechanics problem. We find a fuel-efficient spacecraft trajectory which starts at
infinity and is captured by the smaller member of a binary system, e.g., a moon of Jupiter,
using multiple gravity assists.
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1. Introduction

For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system, multiple gravity assists by
moons could be used in conjunction with ballistic capture to drastically decrease fuel usage; a phenomenon known as
the ‘endgame problem’ in some astrodynamics literature [1,2]. In this paper, we investigate a special class of multiple gravity
assists which can occur outside of the perturbing body’s sphere of influence (the Hill sphere) and which is dynamically con-
nected to orbits that get captured by the perturber, e.g., a Jovian moon. We use a family of symplectic twist maps to approx-
imate a particle’s motion in the planar circular restricted three-body problem, derived in recent work [3]. The maps capture
well the dynamics of the full equations of motion; the phase space contains a connected chaotic zone where intersections
between unstable resonant orbit manifolds provide the template for lanes of fast migration between orbits of different semi-
major axes.

In this paper, we consider a spacecraft initially in a large orbit around Jupiter. Our goal is to use small impulsive controls
to direct the spacecraft into a capture orbit about Callisto, the furthest planet-sized moon of Jupiter. We also consider the
role of uncertainty, which is critical for space trajectories which are designed using chaotic dynamics.
. All rights reserved.
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2. The Keplerian or periapsis Poincaré map

The example system, we consider is the periapsis Poincaré map (alternatively called the Keplerian map) [3],
Fig. 1.
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of the cylinder A ¼ S1 � R onto itself. This two-dimensional symplectic twist map is an approximation of a Poincaré map of
the planar restricted three-body problem, where the surface of section is at periapsis in the space of orbital elements. The
map models a spacecraft on a near-Keplerian orbit about a central body of unit mass, where the spacecraft is perturbed
by a smaller body of mass l. For this reason, other authors have called it the Keplerian map. The interaction of the spacecraft
with the perturber is modeled as an impulsive kick at periapsis passage, encapsulated in the kick function f, see Fig. 1(a),
where ðl;CJ;KÞ are considered bifurcation parameters. For details regarding this map and the parameters, see Ref. [4].

The map captures well the dynamics of the full equations of motion; namely, the phase space, shown in Fig. 1(b), is den-
sely covered by chains of stable resonant islands, in between which is a connected chaotic zone. The more physically intu-
itive semimajor axis a is plotted for the vertical axis instead of Keplerian energy K, where a ¼ �1=ð2KÞ.

The engineering application envisioned for the map is to the design of low energy trajectories, specifically between moons
in the Jupiter moon system. Multiple gravity assists are a key physical mechanism which could be exploited in future scien-
tific missions [4,2]. For example, a trajectory sent from Earth to the Jovian system, just grazing the orbit of the outermost icy
moon Callisto, can migrate using little or no fuel from orbits with large apoapses to smaller ones. This is shown in Fig. 1(c) in
both the phase space and the inertial configuration space. From orbits slightly larger than Callisto’s, the spacecraft can be
captured ballistically (i.e., without fuel expenditure) into an orbit around the moon. At a fixed three-body energy, the set
of all capture orbits is a solid cylindrical tube in the phase space [5,6], shown projected onto configuration space in
Fig. 2(a). Followed backward in time, this solid tube intersects transversally our Keplerian map, interpreted as a Poincaré
surface-of-section. The resulting elliptical region, Fig. 2(b), is an exit from jovicentric orbits exterior to Callisto. It is the first
backward Poincaré cut of the solid tube of capture orbits.

When trajectories of the map reach the exit, the Keplerian map approximation breaks down and the full equations of mo-
tion must be considered. The trajectory can no longer be approximated as near-Keplerian around the central body and will
end up in a near-Keplerian orbit around the perturbing moon. Nevertheless we can consider the location of an exit in the
ðx;KÞ-plane as a target region for computing optimal capture trajectories. The details of the capture orbit around the moon
are not considered here, but can be handled by other means at a finer scale [7]. The large (coarser) scale approach given here
is appropriate for the portion of a spacecraft trajectory immediately before gravitational capture, given the small size of the
exit (i.e., the region of orbits to be captured upon the next periapsis) compared to the size of the full phase space as depicted
in Fig. 2(b).

3. Control problem formulation

We are interested in studying the dynamics of the Keplerian map (1) subjected to control [8]. We define a family of con-
trolled Keplerian maps F : A� U !A
(a) The energy kick function f vs. x for typical values of the parameters. (b) The connected chaotic sea in the phase space of the Keplerian map. The
jor axis a½¼ �1=ð2KÞ� vs. the angle of periapsis x is shown for parameters l ¼ 5:667� 10�5; CJ ¼ 2:995; �a ¼ �1=ð2KÞ ¼ 1:35 appropriate for a
aft in the Jupiter–Callisto system. The initial conditions were taken initially in the chaotic sea and followed for 104 iterates, thus producing the ‘swiss
appearance where holes corresponding to stable resonant islands reside. (c) Upper panel: a phase space trajectory where the initial point is marked
riangle and the final point with a square. Lower panel: the configuration space projections in an inertial frame for this trajectory. Jupiter and Callisto
wn at their initial positions, and Callisto’s orbit is dashed. The uncontrolled spacecraft migration is from larger to smaller semimajor axes, keeping
iapsis direction roughly constant in inertial space. Both the spacecraft and Callisto orbit Jupiter in a counter-clockwise sense.



Fig. 2. (a) A spacecraft P inside a tube of gravitational capture orbits will find itself going from an orbit about Jupiter to an orbit about a moon. The
spacecraft is initially inside a tube whose boundary is the stable invariant manifold of a periodic orbit about L2. The three-dimensional tube, made up of
individual trajectories, is shown as projected onto configuration space. Also shown is the final intersection of the tube with Re , a Poincaré map at periapsis
in the exterior realm. (b) The numerically computed location of an exit on Re , with the same map parameters as before. Spacecraft which reach the exit will
subsequently enter the phase space realm around the perturbing moon. The vertical axis is the Keplerian energy K of the instantaneous conic orbit about
Jupiter.
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where un 2 U ¼ ½�umax;umax�; umax � 1, and the parametric dependence of f is understood. The term a ¼ aðCJ;KÞ is approxi-
mated as constant, where
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Note that Fð�;unÞ is area-preserving for any un. Physically, our control is modeled as a small impulsive thrust maneuver per-
formed at periapsis n changing the speed by un. This increases Kn by an energy aun in addition to the natural dynamics term
lf ðxnÞ.

Our goal is to control trajectories from a subset S �A to a target region O �A. Additionally, we would like to either (a)
minimize the total DV or (b) the time required to reach O. We model this requirement by considering a cost function
g : A� U ! ½0;1Þ,
ðaÞ gðan; unÞ ¼ junj=umax; resp: ðbÞ gðan;unÞ ¼
1

2p
� 1

2Kn

� �3
2

;

where an ¼ ðxn;KnÞ and our goal is to minimize the cost given by g that we accumulate along a controlled trajectory.

3.1. Optimal feedback

Standard methods for solving this (time discrete) optimal control problem include algorithms like value iteration or policy
iteration[9] which compute (approximations to) the optimal value function of the problem and a corresponding (approxi-
mate) optimal feedback, i.e., a function u : A! U which assigns a control value to each state of the system, such that the
closed loop system
anþ1 ¼ Fðan;uðanÞÞ; n ¼ 0;1; . . . ;
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approaches the set O as n!1. However, here we are faced with a general shortest path problem for which more efficient, so-
called ‘‘label-correcting” methods exist [9]. For a general shortest path problem on a continuous state space, as in our case, a
more efficient technique has been proposed [10–12].

For given initial state a 2A and control sequence u 2 UN there is a unique associated trajectory ðanða;uÞÞn2N of 2. Let
UðaÞ ¼ fu 2 UN : anða;uÞ ! O as n!1g denote the set of asymptotically controlling sequences for a and
S ¼ fa 2A : UðaÞ–;g the stabilizable subset S �A. The total cost along a controlled trajectory is given by
Jða;uÞ ¼
X1
n¼0

gðanða;uÞ;unÞ 2 ½0;1�:
The construction of the feedback is based on (an approximation to) the optimal value function V : S! ½0;1�,
VðxÞ ¼ infu2UðaÞJða;uÞ, which satisfies the optimality principle
VðaÞ ¼ inf
u2U

gða;uÞ þ VðFða;uÞÞf g: ð4Þ
The right hand side of this equation can be interpreted as an operator, acting on the function V, the dynamic programming
operator L. If eV is an approximation to V, then one defines the feedback by
uðaÞ ¼ argminu2U gða;uÞ þ eV ðFða; uÞÞn o
; ð5Þ
whenever this minimum exists.

3.2. Discretization

We approximate V by functions which are piecewise constant. Let P be a partition of A, i.e., a collection of pairwise dis-
joint subsets which cover the state space A. For a state a 2A, we let qðaÞ denote the element in the partition which contains
a. Let RP be the subspace of the space RA of all real valued functions on A which are piecewise constant on the elements of
the partition P. The map u : RA ! RP;u½v �ðaÞ ¼ infa02qðaÞvða0Þ, is a projection. We define the discretized dynamic program-
ming operator LP : RP ! RP by
LP ¼ u � L:
This operator has a unique fixed point VP which satisfies VPðOÞ ¼ 0 – the approximate (optimal) value function.
One can show [12] that the fixed point equation VP ¼ LP½VP� is equivalent to the discrete optimality principle
VPðPÞ ¼ min
P02FðPÞ

fGðP; P0Þ þ VPðP0Þg;
where VPðPÞ ¼ VPðaÞ for any a 2 P 2 P, the map F is given by
FðPÞ ¼ fP0 2 P : P0 \ f ðP;UÞ–;g ð6Þ
and the cost function G by
GðP; P0Þ ¼ inffgða;uÞ j a 2 P; Fða;uÞ 2 P0; u 2 Ug: ð7Þ
Note that the approximate value function VPðPÞ is the length of the shortest path from P to qðOÞ in the weighted directed
graph ðP; EÞ, where the set of edges is defined by E ¼ fðP; P0Þ : P0 2FðPÞg and the edge ðP; P0Þ is weighted by GðP; P0Þ. As such,
it can be computed by, e.g., Dijkstra’s algorithm.

3.3. The effect of uncertainty

During the construction of an optimal feedback we avoided having a closer look at the map F given in 2 and took it for
granted for further calculations. In fact, anþ1 ¼ Fðan;unÞ cannot be taken as the exact value for the state at periapsis at time
nþ 1 as model simplifications, small disturbances occurring during flight or even uncertainties of measurement of the cur-
rent state an lead to a perturbed state anþ1. These uncertainties of the states are present at any time n and must be taken into
account for numerical calculations, otherwise the constructed feedback often cannot stabilise the real system and the space-
craft will not end up at the exit region (see e.g., [12]).

3.3.1. Considering uncertainties
Grüne and Junge [12] proposed an enhancement of the approach used before for finding (approximate) optimal stabiliz-

ing feedbacks also for perturbed control systems
anþ1 ¼ Fðan;un;wnÞ; n ¼ 0;1; . . . ;
where wn 2W corresponds to a perturbation occurring at the transition from state an with control un to anþ1. A trajectory
ðanða;u;wÞÞn2N of this system is parametrized by the initial state a 2A, a control sequence u 2 UN and a sequence of per-
turbations w 2WN. The cost accumulated along a trajectory is



4172 S. Jerg et al. / Commun Nonlinear Sci Numer Simulat 14 (2009) 4168–4175
Jða;u;wÞ ¼
X1
n¼0

gðanða;u;wÞ;unÞ 2 ½0;1�:
We are looking for a feedback u : A! U which stabilizes the closed loop system while minimizing the worst case accumu-
lated cost. From a game theoretic point of view we end up with a repeated two player game where in each step the control-
ling player tries to minimize the cost whereas the perturbing player tries to maximize it knowing already the control un of
step n. With b : UN !WN being a nonanticipating strategy (that means uk ¼ u0k8k 6 K ) bðukÞ ¼ bðu0kÞ8k 6 K) and B the set
of all nonanticipating strategies, the construction of an (approximated) optimal feedback u is now based on the upper value
function
VðaÞ ¼ sup
b2B

inf
u2UN

Jða;u; bðuÞÞ
which fulfills the optimality principle
VðaÞ ¼ inf
u2U

gða; uÞ þ sup
w2W

VðFða;u;wÞÞ
� �

: ð8Þ
Again, the right hand side of this equation defines an operator L acting on the function V. Using the discretization method and
the projection u½v �ðaÞ ¼ infa02qðaÞvða0Þ of 3.2 to get the discretized dynamic programming operator LP ¼ u � L, one can show
that the discrete upper value function VP, defined as fixed point of LP, again fulfills a discrete optimality principle [12]. Using
p : 2A ! P;pðAÞ ¼ fP 2 P : P \ A–;g for A �A it can be formulated as
VPðPÞ ¼ inf
N2FðPÞ

GðP;NÞ þ sup
N2N

VPðNÞ
� �

ð9Þ
where VPðPÞ ¼ VPðaÞ for any a 2 P 2 P (same as before). F is now given by
FðPÞ ¼ fpðFða;u;WÞÞ : ða;uÞ 2 P � Ug ð10Þ
and the cost function G by
GðP;NÞ ¼ inffgða;uÞ j ða;uÞ 2 P � U;pðFða;u;WÞÞ ¼Ng: ð11Þ
With E ¼ fðP;NÞ j P 2 P;N 2FðPÞg a set of edges and GðP;NÞ the weight of an edge, ðP; EÞ can be interpreted as a directed
weighted hypergraph with hyperedges ðP;NÞ 2 P� 2P. A generalization of Dijkstra’s algorithm for such hypergraphs which
is able to cope with the supremum over all perturbations in 9 can be used for the computation of VP. An (approximate) opti-
mal feedback is given in an analogous way to the unperturbed case by
uðaÞ ¼ argminu2U gða; uÞ þmax
w2W

VPðFða;u;wÞÞ
� �

ð12Þ
which we will call in the following part as enhanced feedback.

3.3.2. Robust feedback
As there are no crucial restrictions on the type of perturbations, we may consider various or combinations of different

perturbations and uncertainties in state space. Using the discretization of 3.2 for the state space and interpreting the uncer-
tainty in a partition element as a possible perturbation of the current state, maxw2W VPðFða;u;wÞÞ becomes
maxx02qðxÞVPðFðx0;uÞÞ and together with the new cost function Gða;uÞ :¼ supa02qðxÞgða0;uÞ (because it must be independent
of perturbations), we get
VðaÞ ¼ inf
u2U

Gða;uÞ þ max
a02qðaÞ

VðFða0;uÞÞ
� �

ð13Þ
and the enhanced feedback uðaÞ as the argmin of 13.
Note that the enhanced feedback 12 is constant on each partition element P and can efficiently be stored on a controller.

We thus only need to detect the current partition element P and perform a look up for the optimal control. Conceptually, this
allows to use less precise, i.e., cheaper methods for the measurement of the current state. Furthermore, one can show[13]
that VP decreases monotonically along a trajectory. Lyapunov function theory then ensures that the constructed approxi-
mate feedback stabilizes the system.

If instead, we have the possibility to detect the exact state in state space at each step we have to perform a maneuver, we
can show, that using the upper value function an even better feedback can be constructed. The enhanced feedback based on
13 is rather a conservative one, assuming that the current state an will be perturbed before mapping it to anþ1. But having the
exact an at step n, we can define the modified enhanced feedback
�uðaÞ :¼ argminu2U gða; uÞ þ VPðFða;uÞÞf g ð14Þ
where VP is the solution of 13. This feedback is at least as good as the enhanced feedback u of 12 and also leads VP to fulfill
the Lyapunov property for the closed loop system:



S. Jerg et al. / Commun Nonlinear Sci Numer Simulat 14 (2009) 4168–4175 4173
Proposition 3.1. Using the modified enhanced feedback �u defined in 14, the upper value function VP defined in 13 is a Lyapunov
function for the closed loop system and VP Fða; �uðaÞÞð Þ 6 VP Fða;uðaÞÞð Þ holds for all a 2A.

Proof. As �u is defined as the minimizing argument
Fig. 3.
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gða; �uðaÞÞ þ VPðFða; �uðaÞÞÞ 6 gða;uðaÞÞ þ VPðFða; uðaÞÞÞ ð15Þ
holds for all feedbacks u, so also for u here as the enhanced feedback and VP Fða; �uðaÞÞð Þ 6 VP Fða;uðaÞÞð Þ immediately follows.
Furthermore, by using this inequality and just continuing the relevant proof in [13] one then can show again
VPðaÞP gða; �uðaÞÞ þ VPðFða; �uðaÞÞÞ ð16Þ
which means that VP is a Lyapunov function for the closed loop system using the modified enhanced feedback. h
4. Low energy multiple gravity assists

We consider the Jupiter–Callisto system (l ¼ 5:667� 10�5) with the state space A ¼ ½�p;p� � ½�0:4630;�0:03�. For the
start region, we take the region of state space where spacecraft have just been captured from infinity after a distant flyby of
Callisto; these consist of highly eccentric orbits around Jupiter with a periapse close to, but outside, the orbit of Callisto [3].
For the target region O, we consider the exit region leading to capture orbits around Callisto, which we take as given from
tube dynamics methods[6]. We choose umax ¼ 5 m/s (in normalized units) for the control range. The computation of the
upper value function considering the discretization as uncertainty will be based on a partition of A into 220 boxes of equal
size (210 boxes in each direction). We use 25 test points on an equidistant grid in each box in state space as well as 65 equally
spaced points in the control range ½�umax;umax� in order to compute the weighted hypergraph (9) and (10).

In Fig. 3, we can see the resulting approximate upper value function V (in a logarithmic scale) and a zoomed-in view of the
start region. Additionally, an associated trajectory, which was generated using the enhanced feedback u of 12, is plotted,
starting from the initial point a0 ¼ ½x;K� ¼ ½0:036;�0:048� in the start region.

Fig. 4(a) shows the corresponding trajectory in configuration space in an inertial frame. In Fig. 4(b), the red curve shows
the upper value function V along this trajectory and we can see the monotonic decrease. For a comparison, the blue curve in
Fig. 4(b) shows V along the trajectory obtained by using the modified enhanced feedback �u of 14, starting from the same a0.
One can clearly see that this feedback also leads to a monotonic decrease of V, but it is better than the enhanced feedback in
the sense that the values of V now decreases much faster, especially in the beginning when K is large, and therefore the target
region with V ¼ 0 is reached in fewer steps.

4.1. Additional perturbation in semimajor axis

To cope with the possibility that our map F is an inexact model of the physical system, we add an extra perturbation term
bwn for the computation of the orbital energy for the next step nþ 1:
Knþ1 ¼ Kn þ lf ðxnÞ þ aun þ bwn ð17Þ
(a) The upper value function considering discretization as uncertainty (logarithmic scale) and a feedback-controlled trajectory using the enhanced
k for the Keplerian map with ðl;CJ ; �aÞ ¼ ð5:667� 10�5;2:995;1:35Þ. The initial point contained in the start region (gray tube) is marked with a
and the final point, which is contained in the small exit region (magenta tube in the lower right), with a square. (b) A close-up view of the start

the initial point marked is marked with an x. (For interpretation of color mentioned in this figure the reader is referred to the web version of the



Fig. 4. (a) Configuration space projection in an inertial frame of an optimally controlled trajectory (normalized units). Jupiter (central body) and Callisto
(perturbing body) are shown at their initial positions and Jupiter’s orbit is red while Callisto’s orbit is blue. The spacecraft migration is from larger to smaller
semimajor axes, keeping the periapsis direction roughly constant in inertial space. Both the spacecraft and Callisto orbit Jupiter in a counter-clockwise
sense. (b) The approximate upper value function for the Keplerian map along a trajectory where discretization was used as perturbation. Starting point for
the trajectories was a state located in the start tube at a0 ¼ ½0:036;�0:048� and computations were done using once the enhanced feedback (red curve) and
using the modified enhanced feedback (blue curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this paper.)

Fig. 5. The approximate upper value function for the perturbed Keplerian map using discretization as uncertainty and an additional perturbation of the
orbital energy resp. the semimajor axis with a maximum of 1000 km (normalized units) (a) and 1030 km (normalized units) (b) (the magenta tube is the
target region). (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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This formulation allows also additional errors in the measurement of the orbital energy K (respectively, the semimajor axis a)
at the current step n that go beyond the size of a partition element.

We again consider the Jupiter–Callisto system with same parameters as before but the reduced state space
S ¼ ½�p;p� � ½�0:4630;�0:2778�. An error in orbital energy dK is related to an error in the semimajor axis da by
dK ¼ 2K2da and we only consider negative K orbits with jKj < 0:5, so we choose b ¼ 0:5, the upper bound of 2K2. Then
wn refers to a perturbation of the semimajor axis da. In Fig. 5, the resulting approximate upper value function is shown
for two different quantities of the maximum additional perturbation on the semimajor axis, 1000 km and 1030 km (in nor-
malized units). Compared to the approximate upper value function of the system without additional perturbations in Fig. 3,
the function values are bigger now (up to 1100 vs. 320), because they now represent the worst case costs under all possible
additional perturbations for a trajectory from the start region to the exit region.

As one would expect, the values for V increase more and more and when additional perturbations become too large with
respect to the size of one partition element, the number of state spaces having finite values in the approximate upper value
function shrinks to a small neighbourhood of the target region. Due to numerical experiments for the given map F and the
fixed target region of the system we discovered that when using 218 partition elements we can allow an additional pertur-
bation up to 1030 km, which is actually 150 percent of the vertical size of a partition element, before this effect is observed to
be significant. In contrast, using an even coarser grid with 216 partition elements, only a maximum additional perturbation of
around 15 per cent of the vertical size of a partition element (about 350 km in normalized units) is acceptable for a passable
large number of points in state space that remain stabilizable. Allowing only smaller additional perturbations on the other
side does not have a significant effect compared to discretization uncertainties.
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5. Conclusion

We applied a new feedback construction for discrete time optimal control problems with continuous state space, a meth-
od based on a graph theoretic approach, to a celestial mechanics problem. We found a fuel-efficient closed-loop spacecraft
trajectory which starts in a large orbit around Jupiter (having just been captured into the Jupiter-moon system) and is cap-
tured by the moon, using multiple gravity assists. Although applied to a planet-moon system, this method would apply to a
similar capture scenario for a small mass captured into another binary system. Our method demonstrates robustness such
that even with model and measurement uncertainty, a feedback trajectory can be found.
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