Frontiers of Dynamical Systems

PATTERNS OF ROOSTING IN A COLONY OF BATS BASED ON STATE-DEPENDENT DECISIONS, BENEFITS, AND COSTS

Amir E. BozorgMagham and Yuan Lin Faculty Sponsor: Dr. Nicole Abaid

Benefits and costs of social behaviors, governing rules

- Balance of maximized individual benefits and minimized costs,
 - > Benefits: temperature, avoiding predators, stream of data, energy efficiency, ...
 - Costs: lack of food, diseases, limited space, ...

 Social dynamics, a time varying system that follows <u>SIMPLE</u> rules on the individual scale and shows complex behavior on the group scale

Social behavior; Dynamics of roost selection

• <u>Settlement</u>: long term stay of almost all the colony population in one roost,

Social behavior; Dynamics of roost selection

• <u>Fission-fusion</u>: the cycles of dividing/splitting and joining together of individuals.

Modeling

Mathematical model

- *Kashima model*: balancing the conflicting needs of maximizing information accuracy and minimizing infection risk.
 - Each roost has a <u>constant</u> non-normalized quality.
 - > Each individual bat has its estimation of some other roosts,
 - > Each bat communicate with <u>all</u> the roost mates.
 - > An infected bat recover at a <u>constant</u> probability rate,
 - Each bat has a random error of estimation.

Bats:

Mathematical model

• Our modifications:

- Roost quality is a <u>state dependent</u> function:
 - Inherent condition of the roost, roost population, density of infected bats
- Each individual randomly communicates with <u>limited</u> number of roost mates and out-roost individuals,
- Each individual updates its knowledge about the other roosts quality based on its own experiences and communication results,
- > Each bat has a random error of estimation about its living roost,
- Health status changes: two different paths:
 - Healthy to infected: probability of change depends on the short term history of stayed roosts,
 - Infected to healthy: two stage,
 - a) convalescence (remedial period),
 - b) period of dependency to the health condition of selected roosts

Roost state dependent quality

• Roost quality is a function of:

- \succ inherent condition, e.g., ventilation: $\eta_{inherent}$
- > Population: η_1
- > density of infected bats: $\eta_2 = e^{-\alpha ninfect_{ed}}$

Roost quality perception

• Perception of each individual about its own roost,

Roost quality, probabilistic roost selection

• Perception of all individuals about all the roost,

$$Q = \begin{bmatrix} q(1,1) & \cdots & q(1,R) \\ \vdots & q(i,j) & \vdots \\ q(N,1) & \cdots & q(N,R) \end{bmatrix}$$

• Learning mechanism:

$$q_{i,j=1..R,\neq J}(t+1) = \alpha . q_{i,j=1..R,\neq J}(t) + (1-\alpha) . \tilde{q}_{i,j=1..R,\neq J}(t)$$

One's old data

New data from the other agent

• Probabilistic switching between roosts (nonlinear weighting):

$$p_k = \frac{e^{\beta q_k}}{\sum_{j=1}^R e^{\beta q_j}}$$

• Spatial aggregation (Morisita) index:

$$I = \frac{\sum_{j=1}^{R} n_j(t) \cdot n_j(t-1)}{N(N-1)}$$

Probabilistic dynamics of health condition

remains infected; convalescence

becomes healthy; susceptible to the health condition of selected roost.

Random infection rate: changing the status of each healthy individual to infected at each time step; external forcing parameter,

Health condition of each roost: proportional to the density of healthy population

<u>Results</u>

(A1) Settlement

• (A1) Intelligent roost selection yields individual benefits.

Morisita index, fusion cases

(A2) Random motion

(A2) Random roost selection. •

N = 40, R = 4, β = 0, γ = 0.1%, initial sickness ratio = 20%

600

800

1000

400

Time step

Morisita index

0.22

200

0.24

0.22

10

5

20

Individual member

15

30 35 40

25

(C1) Fission-Fusion

• (C1) Intelligent roost selection yields individual benefits.

0.55

0.54

0.53

0.52

0.51

0.5

10 20 30 40 50 60 70 80

N = 80, R = 8, β = 20, γ = 0.1%, initial sickness ratio = 20%

Average overal roost quality, experienced by each bat

Individual member

(C2) Random motion

Average overal roost quality, experienced by each bat

• (C2) Random roost selection. N = 80, R = 8, $\beta = 0$, $\gamma = 0.1\%$, initial sickness ratio = 20%

(D) Fission-Fusion

• (D) Intelligent roost selection, zero external infection rate N = 80, R = 8, β = 20, γ = 0, initial sickness ratio = 20%

Averaged behavior

Average of all bats' overall roost quality experiences, $\beta = 20$.

Average of all bats overall sickness experience, $\beta = 20$.

Network Properties

Numerosity constraint on the bat communication

✓ Gaussian distribution

Communication network

Rectangular: bats

Arrows: directed communication

Directed network of bat communication for N = 4

Network matrices

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
$$D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

$$L = D - A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & 0 & 1 & 0 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

Network coarse observables

- Degree
- Clustering coefficient
- Betweenness centrality

Degree

$d_i(t)$: the diagonal element of the matrix D

✓ The number of peers that a bat communicates with

✓ Individual centrality

Degree - results

Horizontal axis: the number of bats

Vertical axis: the numerosity constraint

N<45: settlement behavior

*45<N<*60: fission-fusion behavior

N>60: fission behavior

N = 20, *n* = 4

Number: Roost index that a bat resides

Clustering coefficient

$$c_i(t) = \frac{e_i(t)}{k_i(t)(k_i(t) - 1)}$$

 $e_i(t)$: the actual number of connections among bat *i*'s neighbors;

 $k_i(t)$: the number of bat *i*'s neighbors

✓ the extent of clustering/friendship

Clustering coefficient - results

Betweenness centrality

$$b_{i}(t) = \frac{1}{(N-1)(N-2)} \sum_{i \neq j \neq k} \frac{s_{jk}^{i}(t)}{s_{jk}(t)}$$

 $s_{ik}(t)$: the number of shortest paths between bat j and bat k

 $s_{jk}^{i}(t)$: the number of shortest paths between bat j and bat k that contain bat i

✓ Individual importance in connecting others

Betweenness centrality - results

Conclusions

- The optimum population range has a big influence on the behavior of the colony. If the colony size is close to that rage, we would expect settlement behavior to happen. In this condition each member of the colony would obtain more benefits than if staying roosts is selected randomly.
- If enough roosts are not available and/or the colony population is large, then intelligent roost selection would not be so beneficial.
- If the colony size is between these two limits and/or individuals have enough options of roosts, then fission-fusion behavior occurs.
- Overall behavior of the colony is not sensitive to the initial sickness ratio. The protocol of changing the health status stabilizes the number of infected individuals in a very short amount of time.
- There is a very distinct boundary between settlement and the fission-fusion (synchronized motion) behavior.
- External infection rate is a very important parameter in this model. If this rate is zero then we could observe infection-free colony, but if it is non-zero then the number of infected individuals would remain non-zero.

Conclusion of network properties

Future work

1. A weighted network with out-roost communication considered more important.

2. More network properties: shortest path length, assortativity.

<u>Acknowledgement</u>

The authors would like to thank Dr. Nicole Abaid for her kind mentorship and review of the paper.

Thank you for your patience! Go Hokies!!!