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Overview and Comments

• Specific Topic: Optimal control for halo orbit insertion. (Col-
laboration with Radu Serban, Linda Petzold and Roby
Wilson).

• Reference: Proceedings of the IFAC meeting, Princeton, March,
2000. Paper available at

http://www.cds.caltech.edu/˜marsden/

(look under papers/papers published/2000 ).

• Related : Application to energy efficient missions from the Earth
to the moon and to the moons of Jupiter. (See Shane’s talk).

• This talk gives one of many possible views on how to merge dy-
namics and optimal control. This is an exciting area for further
exploration!
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� Optimal Insertion into a Halo Orbit

• Halo Orbit Insertion goes back to the early days of L1 halo-
orbit missions (eg, Farquhar et al [1980] for the ISEE-3 mission
launched in 1978).

• Recall the nature of the halo orbit trajectory:
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Figure 1: The Genesis Trajectory.
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Figure 2: Projections of the Genesis Trajectory.
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• We study optimal control in the context of mission design with
the aid of dynamical systems and invariant manifolds. In partic-
ular, we consider the problem of finding optimal burns for
halo orbit insertion of Genesis-type missions, although the
methods are rather general.

• Low thrust and impulsive burn contexts are both important
and the techniques can—presumably—handle either case.

• The optimization software coopt (COntrol–OPTimization) is used
to do an optimization of the cost function (minimizing ∆V )
subject to the constraint of the equations of motion . We
vary the number of impulses and also consider the effect of delaying
the first impulse.

• Aside: Another technique that is quite interesting involves sub-
stituting the controls from the equations of motion to get a higher
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order cost function rather than treating the equations of mo-
tion as constraints (most mechanics people shudder at treating the
equations of motion as constraints); work of Heinzinger, Bloch,
Crouch, Milam, etc.

• Of course, each of these methods has an associated Pontryagin the-
ory and Hamilton-Jacobi-Bellman equations (and related methods
such as receding horizon control).

• coopt, which takes a brute force numerical approach , is
rather general and sophisticated software for optimal control
and optimization of systems modeled by differential-
algebraic equations (DAE), developed by the Computational
Science and Engineering Group at University of California Santa
Barbara. It has been designed to control and optimize a general
class of DAE systems, which may be quite large. It uses multiple
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shooting and SQP techniques to do the optimization.

• Halo orbits are large three dimensional orbits shaped like the edges
of a potato chip. The Y -amplitude of the Genesis halo orbit,
which extends from the X-axis to the maximum Y-value of the
orbit, is about 780,000 km. This is bigger than the radius of the
Moon’s orbit, which is about 380,000 km.

• The computation of halo orbits follows standard nonlinear trajec-
tory computation algorithms based on parallel shooting. Due to
the problem sensitivity and the instability of the halo orbit (al-
beit with a fairly long time constant in the Sun-Earth system), an
accurate first guess is essential.

• This first guess is provided by a high order analytic expansion of
minimum 3rd order using the Lindstedt-Poincaré method. For de-
tails of halo orbit computations and general algorithms, see Richard-
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son [1980], Llibre, Martinez and Simó [1985], Howell and Pernicka
[1988], and Parker and Chua [1989]. This was discussed in the
preceding lectures.

• Simo et al, in conjunction with the SOHO mission in the 1980’s
were the first to study invariant manifolds of the halo orbit.

• Stable manifold of the halo orbit–used to design the trans-
fer trajectory which delivers the Genesis spacecraft from launch to
insertion onto the halo orbit (HOI). Unstable manifold–used
to design the return trajectory which brings the spacecraft and its
samples back to Earth via the heteroclinic connection .

• Expected error due to launch is approximately 7 m/s for a boost of
approximately 3200 m/s from a 200 km circular altitude Earth or-
bit. This error is then optimally corrected using impulsive thrusts.
Halo orbit missions are very sensitive to launch errors .
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• Objective: Find the maneuver times and sizes to minimize
fuel consumption for a trajectory starting at Earth and ending
on the specified halo orbit around the Lagrange point L1 of the
Sun-Earth system at a position and with a velocity consistent
with the HOI time.
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� The Transfer to the Halo Orbit The transfer trajectory is
designed using the following procedure.

• A halo orbit H(t) is first selected, where t represents time. The
stable manifold of H , denoted Ws, consists of a family of asymp-
totic trajectories which take infinite time to wind onto H . These
asymptotic solutions cannot be found numerically and are imprac-
tical for space missions where the transfer time needs to be just a
few months.

• However, there is a family of trajectories that lie arbitrarily close to
Ws that require just a few months to transfer between Earth and
the halo orbit. These trajectories are said to shadow the stable
manifold. It is these shadow trajectories that we can compute and
that are extremely useful to the design of the Genesis transfer
trajectory.
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• Recall how to compute an approximation of the stable man-
ifold of the halo orbit Ws. The basic idea is to linearize
the equations of motion about the periodic orbit and then use the
monodromy matrix provided by Floquet theory to generate a lin-
ear approximation of the stable manifold associated with the halo
orbit. The linear approximation, in the form of a state vector,
is integrated in the nonlinear equations of motion to produce the
approximation of the stable manifold.

• In the case of quasiperiodic orbits that are not too far from
periodic orbits, one approximates the orbit as periodic and the
same algorithm is applied to compute approximations of Ws (see
Howell, Barden and Lo [1997]; see also Gómez, Masdemont and
Simó [1993]). For engineering purposes, at least for space missions,
this seems to work well. Recently, a more refined approach based
on reduction to the center manifold (or neutrally stable manifold)
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is provided by Jorba and Masdemont [1999].

• We will assume that the halo orbit, H(t), and the stable manifold
M(t) are fixed and provided. Hence we will not dwell further
on the theory of their computation which is well covered in the
references (see Howell, Barden, and Lo [1997]). Instead, let us
turn our attention to the trajectory correction maneuver (TCM)
problem.
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� The TCM Problem

• Genesis will be launched from a Delta 7326 launch vehicle (L/V)
using a Thiakol Star37 motor as the final upper stage. The most
important error introduced by the inaccuracies of the
launch vehicle is the velocity magnitude error. In this case,
the expected error is 7 m/s (1 sigma value) relative to a boost
of approximately 3200 m/s from a 200 km circular altitude Earth
orbit.

• It is typical in space missions to use the magnitude of the ∆V as
a measure of the spacecraft performance. The propellant mass is a
much less stable quantity as a measure of spacecraft performance,
since it is dependent on the spacecraft mass and various other
parameters which change frequently as the spacecraft is being built.

• Although a 7 m/s error for a 3200 m/s maneuver may seem rather
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small, it actually is considered quite large. Unfortunately, one of
the characteristics of halo orbit missions is that, unlike interplane-
tary mission launches, they are extremely sensitive to launch errors.

• Typical interplanetary launches can correct launch vehicle errors 7
to 14 days after the launch. In contrast, halo orbit missions must
generally correct the launch error within the first day after launch,
due to energy concerns.

• This critical Trajectory Correction Maneuver is referred
to as TCM1 , being the first TCM of any mission. Two clean
up maneuvers, TCM2 and TCM3, generally follow TCM1 after a
week or more, depending on the situation.

• From the equation for a conic orbit,

E =
V 2

2
− Gm

R
,
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where E is Keplerian energy, V is velocity, Gm is the gravitational
mass, and R is the position, it can be seen that

δV =
δE

V
,

where δV and δE denote the variations in velocity and energy,
respectively. In particular, for highly elliptical orbits, V decreases
sharply as a function of time past perigee. Hence, the correction
maneuver, ∆V , grows sharply in inverse proportion to
the time from launch .

• For a large launch vehicle error, which is possible in the case of
Genesis, the correction maneuver TCM1 can quickly grow beyond
the capability of the spacecraft’s propulsion system.

• Because of necessary initial spacecraft checkout procedures after
launch, which freqently requires up to a week, it is necessary to
investigate the effect of delays in the first trajectory
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manouver . In fact, it is desirable to delay TCM1 by as long
as possible, even at the expense of expenditure of the ∆V budget.

• The Genesis Project prefers that TCM1 be performed at 2 to 7
days after launch, or later if at all possible. The design of the
current Genesis TCM1 retargets the state after launch back to the
nominal HOI state (see Lo, Williams et al [1998]). This approach
is based on linear analysis and is perfectly adequate if TCM1 is
performed within 24 hours after launch. Beyond launch + 24 hours,
the correction cost can become prohibitively high. See also Wilson,
Howell, and Lo [1999] for another approach to targeting that may
be applicable for Genesis.

• The desire to increase the time between launch and TCM1 suggests
that one use a nonlinear approach, combining dynamical systems
theory with optimal control techniques.
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• We explore two similar but slightly different approaches and are
able to obtain in both cases an optimal maneuver strategy that fits
within the Genesis ∆V budget of 150 m/s for the transfer portion
of the trajectory. These are:

◦ HOI technique : use optimal control techniques to retarget
the halo orbit with the original nominal trajectory as the initial
guess.

◦ MOI technique : target the stable manifold.

Both methods are shown to yield good results.
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Halo Insertion Movie
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� TCM as a Trajectory Planning Problem

• Although different from a dynamical systems perspective, the HOI
and MOI problems are very similar once cast as optimization prob-
lems. In the HOI problem, a final maneuver (jump in velocity) is
allowed at THOI = tmax, while in the MOI problem, the final ma-
neuver takes place on the stable manifold at TMOI < tmax and
no maneuver is allowed at THOI = tmax. A halo orbit insertion
trajectory design problem can be simply posed as:

Find the maneuver times and sizes to minimize fuel
consumption (∆V ) for a trajectory starting near Earth
and ending on the specified halo orbit around the Lagrange
point L1 of the Sun-Earth system at a position and with
a velocity consistent with the HOI time.
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• The optimization problem as stated has two important features.

◦ First, it involves discontinuous controls, since the impulsive ma-
neuvers are represented by jumps in the velocity of the space-
craft. It can be readily reformulated to cast it into the framework
required by continuous optimal control algorithms.

◦ Secondly, the final halo orbit insertion time THOI, as well as
all intermediate maneuver times, must be included among the
optimization parameters. This too requires further reformula-
tion of the dynamical model to capture the influence of these
parameters on the solution at a given optimization iteration.

• Next, we discuss the reformulations required to solve the HOI dis-
continuous control problem; modifications of the following proce-
dure required to solve the MOI problem are straightforward.

• Assume that the evolution of the spacecraft is described by a
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generic set of six ODEs

x′ = f(t,x),

where x = (xp;xv) ∈ R
6 contains both positions (xp) and ve-

locities (xv). The dynamical model of the preceding equation can
be either the CRTBP or a more complex model that incorporates
the influence of the Moon and other planets. We use the CRTBP
approximation.

• To deal with the discontinuous nature of the impulsive control ma-
neuvers, the equations of motion (e.o.m.) are solved simultane-
ously on each interval between two maneuvers. Let the maneu-
vers M1,M2, ...,Mn take place at times Ti, i = 1, 2, ..., n and let
xi(t), t ∈ [Ti−1, Ti] be the solution of the dynamic equation on
the interval [Ti−1, Ti]. Recall the figure for this:
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Figure 3: Transfer trajectory. Maneuvers take place at times Ti, i = 1, 2, ..., n. In the stable

manifold insertion problem, there is no maneuver at Tn, i.e. ∆vn = 0.

• To capture the influence of the maneuver times on the solution of
the e.o.m. and to be able to solve the e.o.m. simultaneously, we
scale the time in each interval by the duration ∆Ti = Ti − Ti−1.
As a consequence, all time derivatives in the e.o.m. are scaled by
1/∆Ti. The dimension of the dynamical system is thus increased
to Nx = 6n.
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• Position continuity constraints are imposed at each maneuver, that
is,

x
p
i (Ti) = x

p
i+1(Ti), i = 1, 2, ..., n− 1.

• In addition, the final position is forced to lie on the halo orbit (or
stable manifold), that is,

x
p
n(Tn) = x

p
H(Tn),

where the halo orbit is parameterized by the HOI time Tn.

• Additional constraints dictate that the first maneuver (TCM1) is
delayed by at least a prescribed amount TCM1min, that is,

T1 ≥ TCM1min,

and that the order of maneuvers is respected,

Ti−1 < Ti < Ti+1, i = 1, 2, ..., n− 1.
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With a cost function defined as some measure of the velocity dis-
continuities

∆vi = xvi+1(Ti) − xvi (Ti),

i = 1, 2, ..., n− 1,

∆vn = xvH(Tn) − xvn(Tn),

the optimization problem becomes

min
Ti,xi,∆vi

C(∆vi),

subject to the constraints given above.
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� Choice of Cost Function.

• Typically in space missions, the spacecraft performance is measured
in terms of the maneuver sizes ∆vi. We consider the following two
cost functions.

C1(∆v) =

n∑
i=1

‖∆vi‖2

and

C2(∆v) =

n∑
i=1

‖∆vi‖.

• While the second of these may seem physically the most meaning-
ful, as it measures the total sum of the maneuver sizes, such a cost
function is nondifferentiable whenever one of the maneuvers
vanishes. In our case, this problem occurs already at the first opti-
mization iteration, as the initial guess transfer trajectory only has a
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single nonzero maneuver at halo insertion. The first cost function,
on the other hand, is differentiable everywhere.

• Although the cost function C1 is more appropriate for the opti-
mizer, it raises two new problems. Not only is it not as physically
meaningful as the cost function C2, but, in some particular cases,
decreasing C1 may actually lead to increases in C2.

To resolve these issues, we use the following three-stage opti-
mization sequence :

◦ Starting with the nominal transfer trajectory as initial guess,
and allowing initially n maneuvers, we minimize C1 to obtain a
first optimal trajectory, T ∗

1 .

◦ Using T ∗
1 as initial guess, we minimize C2 to obtain T ∗

2 . It is
possible that during this optimization stage some maneuvers can
become very small. After each optimization iteration we moni-
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tor the feasibility of the iterate and the sizes of all maneuvers.
As soon as at least one maneuver decreases under a prescribed
threshold (typically 0.1 m/s) at some feasible configuration, we
stop the optimization algorithm.

◦ If necessary, a third optimization stage, using T ∗
2 as initial guess

and C2 as cost function is performed with a reduced number of
maneuvers n̄ (obtained by removing those maneuvers identified
as “zero maneuvers” in step 2).
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� Sensitivity (Perturbation) Analysis

• Let f , h, and g be twice continuously differentiable on R
n and

consider the problem P(u,v): minimize f (x) subject to equality
constraints h(x) = u and inequality constraints g(x) ≤ v.

• This problem is parameterized by the vectors u ∈ R
m and v ∈ R

r.

• Assume that for (u, v) = (0, 0) this problem has a local minimum
x∗, which is regular and which together with its associated La-
grange multiplier vectors λ∗ and µ∗, satisfies appropriate second
order conditions in the calculus of variations.

• Then there is an open sphere S centered at (u, v) = (0, 0) such
that for every (u, v) ∈ S there is an x(u, v) ∈ R

n, λ(u, v) ∈
R
m, and µ(u, v) ∈ R

r, which are a local minimum and associated
Lagrange multipliers of P(u,v). (Not a big deal by using the
implicit function theorem).
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• More important—how to calculate: Let p(u, v) be the optimal
cost parameterized by (u, v):

p(u, v) = f (x(u, v)).

Here is how to calculate how p changes with (u, v):

∇up(u, v) = −λ(u, v),

∇vp(u, v) = −µ(u, v).

• The influence of delaying the first trajectory control maneuver
TCM1 is computed from the Lagrange multiplier associated with
the constraint of delaying the first maneuver. To evaluate sensitivi-
ties of the cost function with respect to perturbations in the launch
velocity, we include this perturbation explicitly as an optimization
parameter and fix it to some prescribed value through an equality
constraint.



Computational Science and Engineering

Parametric Study of the Optimal Solution

Influence of:
 Delay in TCM1
 Perturbation in launching velocity

Optimal solutions found for all cases

Number of maneuvers:
 Unperturbed injection velocity: 1
 Perturbed injection velocity: 2           
•

•

•
•



32

� More about the Software.

• coopt is a software package for optimal control and optimization
of systems modeled by differential-algebraic equations (DAE) (see
Brenan, Campbell and Petzold [1995]), developed by the Compu-
tational Science and Engineering Group at the University of Cali-
fornia, Santa Barbara.

• Designed to control and optimize a general class of DAE sys-
tems , which may be quite large.

• Consider a DAE system:

F(t,x,x′,p,u(t)) = 0,

x(t1, r) = x1(r),
(1)

• The control parameters p and r and the vector-valued control
function u(t) must be determined such that an objective function
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of the form∫ tmax

t1

Ψ(t,x(t),p,u(t)) dt + Θ(tmax,x(tmax),p, r),

is minimized and some additional inequality constraints

g(t,x(t),p,u(t)) ≥ 0,

are satisfied. The optimal control function u∗(t) is assumed to be
continuous.

• Approximate u(t) using piecewise polynomials on [t1, tmax], where
their coefficients are determined by the optimization.

• For simplicity, assume that the vector p contains both the parame-
ters and these u(t) coefficients. Also, suppose that the initial states
are fixed and therefore discard the dependency of x1 on r. Hence,
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we consider

F(t,x,x′,p) = 0, x(t1) = x1,

minimize

∫ tmax

t1

ψ(t,x(t),p) dt + Θ(tmax,x(tmax),p)

g(t,x(t),p) ≥ 0.

• coopt implements the single shooting method and a modified
version of the multiple shooting method, both of which allow the
use of adaptive DAE software.

• In the multiple shooting method, the time interval [t1, tmax] is di-
vided into subintervals [ti, ti+1] (i = 1, . . . , N), and the differen-
tial equations F(t,x,x′,p) = 0 are solved over each subinterval,
where additional intermediate variables Xi are introduced. On
each subinterval we denote the solution at time t with initial value
Xi at ti by x(t, ti,Xi,p).
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• Continuity between subintervals in the multiple shooting method
is achieved via the continuity constraints

Ci
1(Xi+1,Xi,p) ≡ Xi+1 − x(ti+1, ti,Xi,p) = 0.

• Additional constraints are required at the boundaries of the shoot-
ing intervals

Ci
2(Xi,p) ≡ g(ti,Xi,p) ≥ 0.

• Write

Φ(t) =

∫ t

t1

ψ(τ,x(τ ),p) dτ,

so the discretized optimal control problem becomes

min
X2,X3,... ,p

Φ(tmax) + Θ(tmax),
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subject to the constraints

Ci
1(Xi+1,Xi,p) = 0,

Ci
2(Xi,p) ≥ 0.

• This problem can be solved by an optimization algorithm; we use
snopt (Gill, Murray and Saunders [1997]), which incorporates a
sequential quadratic programming (SQP) method (Gill,
Murray and Wright [1981]).

• The SQP methods require a gradient and Jacobian matrix that are
the derivatives of the objective function and constraints with re-
spect to the optimization variables. One computes these derivatives
via DAE sensitivity software daspk3.0 (Li and Petzold [1999]).

• The sensitivity equations to be solved by daspk3.0 are generated
via the automatic differentiation software adifor (Bischof, Carle,
Corliss, Griewank and Hovland [1997]).
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• The multiple-shooting strategy can work very well for small-to-
moderate size ODE systems, and has an additional advantage that
it is inherently parallel. However, for large-scale ODE and DAE
systems there is a problem because the computational com-
plexity grows rapidly with the dimension of the ODE system.
coopt implements a highly efficient modified multiple shooting
method (Petzold, Rosen, Gill, Jay and Park [1992] and Serban
[1999]) which reduces the computational complexity to that of sin-
gle shooting for large-scale problems.

• We have found it sufficient to use single shooting for the trajectory
design problems considered.
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